
A Systematic Review of Computational Thinking Approach for

Programming Education in Higher Education Institutions

Friday Joseph Agbo
 School of Computing

 University of Eastern Finland

 Joensuu, Finland

fridaya@uef.fi

Solomon Sunday Oyelere

School of Computing

 University of Eastern Finland

 Joensuu, Finland

solomon.oyelere@uef.fi

Sunday Adewumi
Department of Computer Science

 Federal University Lokoja

 Lokoja, Kogi State, Nigeria

 sunday.adewumi@fulokoja.edu.ng

Jarkko Suhonen
 School of Computing

 University of Eastern Finland

 Joensuu, Finland

jarkko.suhonen@uef.fi

ABSTRACT
This study examined how computational thinking (CT) has been

used to teach problem-solving skills and programming education in

the recent past. This study specifically (i) identified articles that

discussed CT approach for programming education at higher

education institutions (HEIs), (ii) classified the different CT

approaches and tools employed for programming education at

HEIs, (iii) synthesised and discussed results that are reported by

relevant studies that utilized CT for teaching programming at HEIs.

A systematic literature review methodology was adopted in this

study. Out of 161 articles retrieved, 33 of them that met the

inclusion criteria were reviewed. Our study revealed that the use of

CT at HEIs for programming education began in 2010; many

studies did not specify the context of use, but the use of CT is found

to be gaining grounds in many contexts, especially the developed

countries; course design approach was mostly employed by

educators to introduce CT at HEIs for programming education.

Furthermore, this study pointed out how CT approach can be

explored for designing a smart learning environment to support

students in learning computer programming.

CCS CONCEPTS

• Social and professional topics → computational thinking

KEYWORDS

computational thinking, problem-solving, programming, higher

education, undergraduates, smart learning

ACM Reference format:

Friday Joseph Agbo, Solomon Sunday Oyelere, Jarkko Suhonen and
Sunday Adewumi. 2019. A Systematic Review of Computational Thinking

Approach for Programming Education in Higher Education Institutions. In

19th Koli Calling International Conference on Computing Education
Research (Koli Calling ’19), November 21-24, 2019, Koli, Finland. ACM,

New York, NY, USA, 10 pages.
 https://doi.org/10.1145/3364510.3364521https://doi.org/10.1145/1234567890

1 INTRODUCTION
Computational thinking (CT) has the capacity to improve

programming education by building the problem-solving and

algorithmic skills of learners [1]. CT involves having thinking

skills, i.e., “ways of thinking and practicing that are sharpened and

honed through practice”—Denning and Tedre [2] (pp.6). Among

other skills, CT are envisioned to make the developing of

programming and problem-solving skills a flexible experience.

Learning of computer programming remains one of the challenges

facing students and educators [3] [4] [5]. While CT is the

fundamental approach towards understanding, abstracting and

modelling a problem with the intention of providing a solution,

computer programming is the actual transcription of the abstraction

into a computer understandable language. The stages of computer

programming involve writing, testing, debugging and running a set

of codes using different programming languages [6] [7]. These

stages can be tasking and complex, especially for novices.

Researchers [6] [8] [9] have shown that often, programming is

relatively considered difficult among other science-related courses,

and building the skill takes time and commitment [3]. However,

efforts to ease the task of learning to develop one’s problem-solving

skills and programming education exist [4]. Some authors applied

approaches such as visualization, games, puzzles, and

computational thinking to motivate students and increase

interactions between learners and educators [8] [9] [10]. For

instance, Oyelere et al. [9], Li [11] designed a system/approach for

teaching computing education with puzzles to motivate students’

learning.

Computational thinking was made popular by Wing [12] in 2006,

stating that CT “involves solving problems, designing systems, and

understanding human behaviours, by drawing on the concepts

fundamental to computer science” [12] (pp.33). Since then, varied

definitions of CT have been provided.

In this paper, we discussed the various definitions of CT by authors

from different perspectives and presented a definition that is

focused on using CT for problem-solving as a fundamental step

towards teaching and learning programming education. The study

also investigated how CT is being utilized for teaching and learning

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

Koli Calling '19, November 21–24, 2019, Koli, Finland

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7715-7/19/11…$15.00

https://doi.org/10.1145/3364510.3364521https://doi.org/10.1145/1234567890

mailto:solomon.oyelere@uef.fi
mailto:Permissions@acm.org

Koli Calling ’18, November 21–24, 2019, Koli, Finland F. J. Agbo et al.

at higher education institutions (HEI). Furthermore, this study

investigates the use of CT approach by educators and scholars in

teaching programming education at the HEIs. As far as we know,

there is no systematic literature review of CT as a programming

teaching approach conducted within the premise of HEIs. Hence,

this study aims to investigate different CT approaches used for

teaching and learning programming at HEIs to explore the

opportunity for ingraining CT feature into the design of a smart

learning environment (SLE). This study is important because it

helps to give direction to the design of a SLE to support

programming education based on CT approach. Besides, CT skills

are fundamental knowledge for students at the HEIs [1].

Furthermore, this study will provide insight to researchers and

developers of contemporary learning environment, specifically in

the area of computing education, on ways CT can enhance the

development of a SLE. To achieve the aim of this paper, the

following objectives were outlined for this study: (i) identify

articles that discussed CT approach for programming education at

HEIs, (ii) classify the different CT approaches and tools used for

programming education at HEIs, (iii) discuss results that are

reported by scholars that used CT approaches for programming

education at HEIs. Based on the objectives, this study seeks to

provide answers to the following research questions:

RQ1. How has the use of CT been explored for teaching

programming in HEIs?

RQ2. What are the ways CT approach has been used to teach

programming education in HEIs?

RQ3. How has the use of CT approach for teaching programming

impacted students learning experience?

2 BACKGROUND

2.1 Definition of CT

According to Denning and Tedre [2] (pp.10), the historical

perspective of computational thinking exists even before the

emergence of electronic computers. However, since the discussion

of CT by Wing [12]—centred on the fundamental knowledge for

computer programming, it has fast become popular in the computer

science domain [11, 1]. Although there exists no consensus

definition of CT, and as presented by Velázquez [13], most of the

definitions are ambiguous. For instance, Barr and Stephenson [14]

provided what they called “operational definition” of CT as a

problem-solving process that includes a set of characteristics.

These charactersistices are: i) formulating a problem in a way that

one can use a computer or other tools to solve them; ii) organising

and analysing the data logically; iii) abstracting the data in form

of models and simulations; iv) automating the solution through

algorithmic steps; v) identifying, analysing, and implementing a

possible solution with the goal of achieving the most efficient

combination of steps and resources; vi) generalizing and applying

the problem-solving steps to varieties of problems in other areas of

endeavours. In addition, Mannila et al. [15] have defined CT as “a

term meant to encompass a set of concepts and thought processes

that aid in formulating problems and their solutions in different

fields in a way that could involve computers.” [15] (pp. 1). One of

the points stressed by many authors is the fact that the concept of

CT is a fundamental background in computer science [16], which

deals with scientific thinking in the technological age. Also, in

many definitions of CT, the word ‘problem’ is mostly the focus.

For instance, it is common to encounter words like problem-

solving, problem decomposition, and problem abstraction. From

these various definitions of CT, some keywords emerge; problem-

solving, systems design, and human behaviour [12, 17, 18]. These

keywords are relevant when discussing the fundamental concepts

of computer science.

In trying to solve the very many human problems, CT promises to

be a good approach by applying human-computer interaction and

relationship perspectives [11]. According to Wing [12], CT is

beyond computer programming or the ability to write codes, CT

involves more thinking about multiple levels of abstractions.

Problem decomposition and abstraction is the first approach

towards problem-solving; next is the algorithm design, which

eventually leads to computer programming, and then, a concrete

solution (See Figure 1).

One of the ways to help the students develop programming

knowledge is to build problem-solving skills. Problem-solving

skills involved a critical thinking process about the understanding

of the problem on which to develop concrete steps towards its

solution. This skill is needed to develop students programming

experience since an explicit path to the solution can be defined. The

application of CT to problem-solving is not limited to computer

science alone, but every field of science and indeed, all human

endeavours. However, this paper discussed CT as a fundamental

step towards building problem-solving skills that can aid

programming education using the CT approach to achieve this

objective.

Figure 1: Definition of computational thinking and problem-

solving steps

2.2 CT for problem-solving and programming

education

Every day, humans are faced with real-world problems that require

some thinking and logic in order to solve them. People apply the

concept of CT consciously or unconsciously. CT’s concept may not

be necessarily complex but attempts to solve every problem by

defining some simple computational steps. These steps, however,

can involve abstraction of the problems, creating models, designing

algorithms, and verifying results, and ascertaining the viability of

the solution [11]. Since the discussion on CT emerged, many

researches demonstrate the practical application in problem-

solving, algorithm, system modelling, and automation. Most of

these researches presented results of CT application in teaching K-

12 and STEM [14, 19]. Although studies that investigated the

approaches for integrating CT in teaching specific disciplines exists

[20], there seems to be limited attempt to study the application and

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

impact of CT at HEI to teach programming education and problem-

solving. For example, Araujo et al., [21] studied the techniques and

approaches used by researchers and teachers to assess the

development of CT abilities in students. Their work explored

previously proposed approaches to promote CT and classified them

based on their capability to assess CT in education. Similarly,

Moreno-León [22] reviewed recent investigations that study CT

from different perspectives. The study further classified

technologies to learn and teach CT into five, which includes i)

unplugged activities; ii) arrow-based visual environment; iii)

block-based visual environment; iv) textual programming

language; v) connected with the physical world. In an attempt to

also investigate how CT in schools is assessed, [22] highlighted

three main approaches used by educators—CT-test, Bebras, and

Dr. Scratch. Another recent study by [23] reviewed literature on CT

and reported on the diversity in definitions, interventions,

assessments, and models. In computing education, for example,

Repenning et al. [24] employed the concept of designing 3D

computer graphics as a CT approach in the teaching of computer

science education. This approach, beyond motivating the learners,

presents the visualization of computer programming to aid learners’

understanding.

Similarly, Philip et al. [25] studied the relationship between CT,

problem-solving and programming education with students of HEI.

They tried to present a pragmatic approach towards developing CT

and problem-solving skills for novices of computer programming.

This study [25] showed that CT is fundamental in introductory

programming; it demonstrates that in problem-solving, defining the

abstraction and modelling precedes both programming logic and

constructs of the solution. The two levels of problem-solving are

problem analysis and design, and implementation (see Figure 1).

The role of programming in computing education, according to [26]

has been a major debate. Nowadays, programming education has

grown into a discipline and further into a professional career. The

traditional ways of learning programming using languages such as

Java and C++ can be challenging and boring. However, using

visualization technique in supporting programming education can

improve computational thinking and problem-solving skills of

learners [19]. For example, when trying to teach freshmen the

basics of programming education, it is better to use visual

programming language such as Scratch rather than the traditional

approach, which may be difficult to understand [25]. Visual

programming has been researched recently to aid the students’

understanding of computer programming [19] and simplify their

learning experience. A block programming concept is used to

present visualization of the traditional programming syntaxes, so

that the students do not necessarily have to understand its syntax

and semantics that may appear abstract. A practical example in

Figure 2a-b depicts a simple program for the number system.

A study to investigate the use of CT and its adoption at the HEI was

conducted by Czerkawski and Lyman [27]. Their study revealed

that efforts are being made to design and introduce CT courses at

the HEI and to implement CT in computer science curricula. All

these studies play a significant role in advancing the research

contribution in CT and provide more insight into the level of efforts

being made by scholars regarding the current situation. However,

they do not provide knowledge regarding the state-of-the-art tools

and interventions of CT utilized at HEIs and their impact on

students at HEIs.

Besides, our study intends to explore the opportunity of ingraining

CT features into the design of SLE for programming education,

since CT is believed to be a foundation for teaching and learning of

programming by novices and freshmen.

3 RESEARCH METHODOLOGY

3.1 Procedure

We began by collecting relevant literature on CT from selected

multidisciplinary databases following the systematic review

approach [23]. During the data collection, we considered only

articles that were peer-reviewed and published in scholarly journals

and conferences. Our search obtained relevant articles on studies

regarding computational thinking, problem-solving, and

programming education at the HEIs. Thus, our search keywords

were computational thinking, problem-solving, programming,

computer science, and undergraduate. The search was conducted

in five databases—IEEE Xplore, ACM, ScienceDirect, and

Springer Link. The decision to select these databases for our search

was because they warehouse articles that are published in the field

of education, STEM (science technology engineering and

mathematics), and computer science [28].

In each of the databases, the same keywords were used to conduct

an advanced search. The search was targeted at metadata aspects of

the literature. The metadata for an article contains important

information about that article, for example, the title of an article,

keywords, and abstracts are part of metadata. An example of the

combination of search string is

((((computational thinking) AND problem solving) AND

programming) OR computer science). These strings were modified

when necessary to suit the search pattern of each databases. The

results returned by the search were subjected to list of criteria in

order to select only articles that are relevant to our study.

Figure 2b. Visual block programming in micro:bit

Figure 2a. Traditional coding in JavaScript

Koli Calling ’18, November 21–24, 2019, Koli, Finland F. J. Agbo et al.

3.2 Paper screening

Screening of the paper was conducted by applying some sets of

inclusion and exclusion criteria. The process for selection started

by scanning through the metadata before downloading the

document for further screening. For instance, the title, keywords

and abstract were first skimmed through to ensure that the article is

focused on our study. The inclusion and exclusion criteria are

presented in Table 1 while the results returned after running the

queries in each database are shown in Table 2.

Table 1. Inclusion and exclusion criteria
Inclusion criteria Exclusion criteria

Articles that focuses on computational thniking,

problem-solving, and programming education

Articles that do not focus on the

keywords or not written in

English Language are excluded

Articles that are published in a peer-reviewed

journals or conferences

Materials that are not peer-

reviewed (audio/video files,

PPT, e.t.c) are left out

Articles that either presented a concrete

programming artefacts, evaluated a solution for

programming or design a study to explore CT

Theoretical and conceptual

studies are removed

Table 2 Summary of search results
Database Search Results

ACM 47

IEEE Xplore 64

ScienceDirect 22

SpringerLink 28

Total 161

The next stage of the selection process considered only studies that

are peer-reviewed and published in a journal or conferences. The

last major selection stage examined whether the paper utilized a

tool, artefact or designed a course to apply in a real-life

teaching/learning scenario and presented empirical evaluation of

the study outcome.

A total of 161 data were collected from the search conducted. As

depicted in Figure 3, most of the studies do not meet the conditions

for inclusion after all the papers collected were read and criteria

were applied. Studies that were not conducted in the context of

HEIs were dropped.

Besides, some of the articles from the databases only showed the

abstract, which is not sufficient for our review; also, some of the

articles could not be accessed, while some are not written in the

English language. At the final stage of the selection process, 33

studies were selected as relevant to our study.

4 RESULTS
This section presents the findings by first examining the trends in

the use of CT for programming education at the higher education

institutions (HEIs). Further, we investigate the different CT

approaches and tools used for programming education at HEIs.

4.1 CT for programming education in HEIs

4.1.1 Studies distribution by year of publication. Figure 4 presents

the studies distribution according to the year of publication.

Although we do not delimit the study by defining date range, but

data gathered revealed the trends when the topic “Computational

Thinking” began to gain scholar’s attention. Regarding the use of

CT for programming education at HEIs, we found 3 studies that

were conducted in 2010. More studies were found in 2017 and

2018.

4.1.2 Studies distribution by outlets of publication. Our study was

focused on collecting data from two major outlets (i.e., conferences

and journals) as explained in section 2.1. Table 3 delineates the

distribution of studies by the publication outlet.

Table 3 Collected studies distribution by outlets
Publication Outlet Frequency

Journals 10

Conferences 23

4.1.3. Context of study. Table 4 shows the context in terms of

country where each study was conducted. Although many of the

study do not explicitly mentioned the country where it was

conducted, our study shows that United States had more frequency

among the countries.

Table 4 Collected studies distribution by context
Country Canada India United

States

China Ireland Japan Unspecified

Frequency 1 1 6 1 1 1 22

Figure 3: Processes for selecting relevant studies

0 2 4 6 8 10

2010
2011
2012
2013
2014
2015
2016
2017
2018

Frequency of publication

Ye
ar

 o
f

p
u

b
lic

at
io

n

Figure 4: Distribution by year of publication

Table 5 Analysis of studies that use CT approach in teaching programming education at HEIs
Paper title Author(s) Teaching approach & study

technique

Learners Context Settings Study impact/evaluation

Connecting undergraduate programs to high

school students: teacher workshops on

computational thinking and computer science

Morreale [29] Workshop and short courses Teachers of computer science at

high schools

US high school Formal Pre- and post- workshop surveys show that these teachers’

perceptions were positively affected regarding careers in

computer science

Using video to explore programming thinking

among undergraduate students

Wellington and

Ward [30]

Recorded video furring

programming activity

Computer Science undergraduate

students

Context is not

mentioned

Formal The study shows a cognitive difference between freshmen and

their different

levels of experience in problem-solving and code reading

Promoting Computational Thinking with

Programming

Selby [31] Empirical study Teachers, Students, and industrial

employee in the area of problem-

solving, CT and programming

Context is not

mentioned

Informal The study revealed that CT approach is a requirement for 21st

century problem-solving and programming education

Computational Thinking in Educational Activities

An evaluation of the educational game Light-Bot

Gouws et al. [32] A computational thinking

framework designed and

evaluated using Light-Bot

Not specified Context not

specified

Formal The evaluation of CTF using an educational game, Light-Bot

shows to be a useful for practicing computational

thinking, with an overall CT score of 74%

A freshman seminar on problem solving and

algorithmic thinking

Lamagna [33] Course designed for real-world

problems with computational

approach; students engaged in

solving challenging puzzles with

a mathematical theme

Computer science and

mathematics students

Context is not

mentioned

Formal Assessments and attitude surveys conducted at the beginning

and end of the course shows the effectiveness of the approach

and a high level of students’ satisfaction with their experiences

in gaining problem solving-skills

A Qualitative Study of Students’ Computational

Thinking Skills in a Data-Driven Computing

Class

Yuen and

Robbins [34]

Course design using data-driven

approach

Biology major students in a

computer science course (CS0)

University in South

Texas, USA

Formal The evaluation of the study shows the visualization component

of CT appears to provide valuable feedback for students in

accomplishing the programming tasks

Computational Thinking is Critical Thinking:

Connecting to University Discourse, Goals, and

Learning Outcomes

Kules [35] Explorative design to compare

critical thinking CritT and

computational thinking CompT

Entry level students at the

University of Maryland

University of

Maryland

Formal The study provided guidelines towards building CompT

A Case Study of Computer-based Problem-

Solving Skill Development by Using Spreadsheet

Software

Chatvichienchai

[36]

Seminar and course Design second-year and third-year

students

University of

Nagasaki, Japan

Formal Since this study is a report of an ongoing project, the author

expressed that the use of Excel micro would allow students to

spend less time for program development than other

conventional programming languages

Teaching Inclusive Thinking in Undergraduate

Computing

Palan et al. [37] Course design to teach inclusive

thinking

undergraduate computer science

students

Context is not

mentioned

Formal Participants formed groups and performed tasks that led to

design of mobile app, website, or desktop application while

following a design process

Computational thinking and programming

education principles

García-Peñalvo

[17]

A highlight of presentations

regarding CT at HEIs in TEEM

Conference, 2018

Pre and entering university

students

Context not

specified

Formal The report shows many contributions that discussed CT as an

approach for programming education

Relationship between Computational Thinking

and a Measure of Intelligence as a General

Problem-Solving Ability

Boom et al. [38] A course design with empirical

survey

pre-service teacher students Context not

specified

Formal The result from the study shows that there is a strong

relationship between computational thinking and intelligence;

i.e., as capability of CT increases, student’s intelligence tends

to increase as well

A Novel Interdisciplinary Course in

Gerontechnology for Disseminating

Computational Thinking

Yang, et al. [39] Course design & workshop Undergraduate students from three

programs: CS, Gerontoloty, and

Graphic design

Iowa State

University

Formal Results from this study shows that the course produced

significant improvement in students’ self-reported competency

in computational thinking and computer technology

A Pragmatic Approach to Develop Computational

Thinking Skills in Novices in Computing

Education

Philip et al [25] A course designed to develop

computational thinking skills of

novices

Computer engineering students Engineering

College in Kochi

Formal The results and students’ feedback from this study he students’

feedback showed that the course has increased their level of

confidence in computer programming and problem-solving

skills

A Fun-Learning Approach to Programming: An

Adaptive Virtual Reality (VR) Platform to Teach

Programming to Engineering Students

Chandramouli et

al. [40]

A Virtual Environment (VE)

framework to teach

programming concepts

students of STEM and STEAM Context not

specified

Formal Although the authors claimed that the VR framework can

enhance students’ understanding of programming, there is no

clear report about the evaluation of the proposed framework.

Teaching and Learning Computational Thinking

through Solving Problems in Artificial

Intelligence on Designing Introductoctory

Enginnering and Computing Courses

Silapachote and

Srisuphab [41]

A course designed to integrate

AI activities

Engineering and computer science

undergraduates

Context not

specified

Formal Results shows that solving AI problems is an effective tool in

teaching and learning computational thinking for entering

undergraduates in computing and engineering fields.

Design Thinking and Computational Modeling to

Stop Illegal Poaching

Padmanabhan et

al. [42]

A design thinking framework Multi-level students (k-12,

undergraduates, and graduates)

Context not

specified but

focused on

developing

countries

Informal This work clearly helped to establish STEM education

partnerships and alliances outside traditional boundaries and

has helped to create new synergies between the three levels of

education K-12, undergraduates and graduates in solving real-

world problems

Koli Calling ’18, November 21–24, 2019, Koli, Finland F. J. Agbo et al.

Teaching Computational Thinking to Entry-level

Undergraduate Engineering Students at Amrita

University

Shyamala et al.

[43]

A course design approach Entry-level undergraduate

engineering students (numbering

over 2500)

Amrita University,

India

Formal In this work, the authors reported that computational thinking

course should be designed to have more emphasis on hands-on

sessions with lectures supporting those sessions rather than

theoretical sessions

CS for ALL: Introducing Computational Thinking

with Hands-on Experience in College

Jung et al. [44] A course design with practical

exercises using Scratch and

mBot

Undergraduate students Context not

specified

Formal Students’ feedback shows a high level of enthusiasm and

engagement during the course. This hands-on learning nature

of the course helped the non-computing major students to have

more understanding through interactive classroom experience

within a team

The effect of simulation games on the learning of

computational problem solving

Liu [45] et al. Simulation games-based

approach

First-year students in a university northern Taiwan Formal The findings in this study shows that students when learning

computational problem solving with the game were more

likely to perceive a flow learning experience than in traditional

lectures. Also, their intrinsic motivation to learn was enhanced

A serious game for developing computational

thinking and learning introductory computer

programming

Kazimoglu et al.

[46]

Games-based learning approach Undergraduate computer science

students

Context not

specified

Formal Survey response from group of students in computer science

and related degree programmes confirmed that they found the

game enjoyable, and also beneficial in helping students to

learn problem-solving skills for introductory computer

programming

Learning Programming at the Computational

Thinking Level via Digital Game-Play

Kazimoglu et al.

[47]

Games-based framework to

teach CT

Computer science students Context not

specified

Formal The preliminary evaluation of this game revealed that the

majority of participants found the game well suited to help

students to understand introductory programming constructs

A validity and reliability study of the

computational thinking scales

Kormaz et al.

[48]

An exploratory study to

determine the level of

computational thinking skills

among students

Undergraduate students and

distance learning students

Amasya University formal

and

informal

The study concluded that the scale used in the experiment is a

valid and reliable measurement tool that could measure the

computational thinking skills of the students. Also, the digital

age individuals are expected to have the computational

thinking skill

Computational thinking development through

creative programming in higher education

Romero et al.

[49]

 Course design with creative

programming projects

Non-computer science

undergraduate students

Canadaian

University

Formal The outcome shows how students’ assessment in a creative

programming can be automated as used in Dr. Scratch

A Case Study to Promote Computational

Thinking: The Lab Rotation Approach

Cai et al. [50] blended learning Non computer science first year

college students

 Chinese higher

education

Formal The result shows improvement in students’ computational

thinking method

From Computational Thinking to Constructive

Design with Simple Models

Margaria [18] short courses, bootcamps, and

semester-long courses on

Model-Driven Design’

Non computer science first year

University students

Ireland University Formal The author reported that the study revealed enhancement in the

constructive design and critical thinking skills of the students

Applying online externally-facilitated regulated

learning and computational thinking to improve

students’ learning

Tsai and Tsai

[51]

Course design on ERL and CT Undergraduate students Context not

mentioned

Formal Students with ERL support developed their CT skills better

than those without

Supporting Undergraduate Computer Science

Education Using Educational Robots

Saad et al. [52] Use of Robort for introductory

CS

Computer science students Armstrong Atlantic

State University

Formal The result shows that students are motivated to increase their

interest to further learn introductory programming

Infusing Computational Thinking across

Disciplines: Reflections & Lessons Learned

Pollock et al.

[20]

Course Design Undergraduate students from

multiple disciplines

Context not

specified

Formal Provided a model for integrating CT into faculty of multiple

disciplines

Computational Thinking in a Game Design

Course

Settle [53] Tic-Tac-Toe game design DePaul University Undergraduate

students

Chicago Formal The course helped students to better classify and understand

loops through game design

MPCT – Media Propelled Computational

Thinking

Freudenthal et al.

[54]

Course design called MPCT Entry students’ program for

freshmen

University of Texas

at El Paso (UTEP)

Formal MPCT was evaluated to help students acquire computational

reasoning, integrates both programming and mathematics

Comparing Block-Basedand Text-

BasedProgramming in High School Computer

Science Classrooms

Weintrop and

Wilensky [55]

Course Design Introductory programming

students

Context not

mentioned

Formal The comparative study revealed the impact of the visualized

programming and text-based programming, and helps to

answer the question on how best to introduce today’s students

to essential computing concepts

Teaching Computational Thinking to Non-

computing Majors Using Spreadsheet Functions

Yeh et al. [56] Course Design College students Context not

mentioned

Formal The study revealed some of the challenges and weakness of

teaching CT to novice learners

Learning to think like a trainer: bringing Scratch

for Educational Sciences professional’s formation

Almeida and

Pessoa [57]

Course Design Degree students of educational

science

Context not

mentioned

Un-

specified

Shows that students' extra motivation to learn CT with this

type of tool especially when working in groups by identifying

problems and solving them using the opinions of the different

members of the group

4.2 Tools, interventions and design approach to

CT for programming education at HEIs
In order to provide an answer to the research objectives

highlighted in section 1, the study investigated the tools and

research design employed for teaching/learning of computational

thinking at HEIs. Analysis shows that the majority of the study

reviewed utilized course design approach to teach computational

thinking at HEIs. Although some studies did not explicitly

mention the approach used, however, workshop, seminar, and

exploratory study forms part of the strategies adopted in

introducing CT for computing education. A few studies

introduced computational thinking at higher education

institutions by using a concrete tool and technology. These tools

are developed/adopted to build problem-solving, algorithmic, and

programming knowledge among the freshmen. Some of the tools

leveraged on the common software such as Microsoft Excel,

while some are designed to be game/puzzle-based approach.

However, many of the studies did not specify the name of the tool

or technology utilized.

5 DISCUSSIONS
In this review, we analyse scholarly articles on the use of

computational thinking approach for programming education at

higher education institutions. By doing so, we investigated the

study design, tools, and technology adopted, and the impact of

these studies. This section discusses the findings presented in

section 3 regarding the adoption of CT for programming

education at HEIs and the impacts of such studies on the students

within the context of discuss. Although studies on the use of CT

approach for teaching programming education at lower education

exists [58] [59] [60], our study has shown that CT courses have

been designed and administered to undergraduate entry-level

students to prepare them for introductory programming courses

(IPCs) that requires rigorous logical and algorithmic skills. For

example, Ref [46] [33] [34] [36] [49] [44] [39] utilized CT

approaches and tools such as Wiki-based project, MATLAB,

puzzles, spreadsheet micro, Scratch, and robot to introduce new

students to IPCs and problem-solving.

5.1 Reflections from the use of CT approach for

programming education at HEIs and its impact
Educators and researchers have reported their experiences from

the conduction, analysis, and evaluation of the CT approach

introduced among the freshers undergraduate at HEIs. While

some results showed a positive outcome, others have mixed

feelings about the way different categories of students reacted to

the CT courses [39, 61, 25]. On the positive side, the introduction

of CT as a prerequisite for introductory programming courses was

shown to bridge the gap that exists between students with and

without programming background [25]. For instance, feedback

from students in a study shows that “the course has helped them

to improve their problem solving skills…and they performed well

in their regular programming sessions” [25](pp.202). In another

study, the use of games to teach students CT and problem-solving

skills showed that some students had flow experience; some were

bored and anxious during the simulation; some demonstrated

analytic reasoning strategies to learn computational problem-

solving skills, while others applied the trial-and-error approach to

problem-solving [33] [45]. In addition, a study that teaches

programming within a data-driven context in a university and

allowed students to learn computing concepts and computational

thinking by writing programs in MATLAB was conducted [34].

This study shows that computational and visualization tasks

appear to be closely linked, and the visualization component

appears to provide valuable feedback for students in the

programming tasks accomplishment.

However, a few of the articles did not present a concise result

about the impact of CT on students at HEIs; fundamental concern

raised about the distinctive boundary-line between computer

science and CT; curriculum design that compliments the field of

computer science also requires further discussion. Overall, the

introduction of CT at undergraduate level have been reported to

impact positively on the students by motivating interest in

programming, enhancing problem-solving skills and cognitive

capabilities, and improving interdisciplinary teamwork

participation (see Table 5).

5.2 CT approach for programming education in

a smart learning environment

Nowadays, there is high interest on adopting a smart learning

approach for teaching and learning programming education [62].

Smart learning environment (SLE) is a new paradigm in the

learning ecosystem that seeks to enhance the learning experience.

The aim of SLE is to allow for learner-centred approach by

personalizing, adapting, and contextualizing learning. The use of

CT for problem-solving and programming education is a viable

approach towards designing an interactive SLE that can aide the

learning process for especially novices. This section discusses the

use of CT for teaching/learning of programming education as a

potential approach towards designing a SLE at HEIs.

In our previous work Agbo et al. [62] had identified four

components that are relevant when designing a SLE. These

components, which consists of user, context, pedagogy, and tools,

are investigated in this study and are linked to the current findings.

This study revealed specific context of use, for instance,

undergraduate students in China [50] [25], University students in

Ireland [18], computer science students in a Canadian University

[49], and US high school teachers [29]. Similarly, the pedagogical

component of these studies that we have reviewed are presented

in Table 2. The result showed that the majority of the articles

utilized course design approach as their pedagogy, and a few

studies employed workshop/seminar approach. Others such as

[36] have used project design approach and integrated into the

curriculum of a semester or section to evaluate the students

collaborative and cooperative problem-solving skills. For

instance, some authors designed courses that were focused on

Koli Calling ’18, November 21–24, 2019, Koli, Finland F. J. Agbo et al.

computer programming concepts such as variables, data types,

algorithmic thinking, functions, recursion, and problem-solving

techniques [39, 25, 42, 41, 43]. Besides, puzzle-based techniques,

games, and creative exercises were other strategies adopted for

introducing the concept of CT and problem formulation at the

undergraduate level of education [33, 61, 17].

In addition, our analysis based on the type of tools and technology

deployed to conduct the studies showed that majority did not

specify the tool. However, tools such as Microsoft Excel

Spreadsheet [36], MATLAB [34], Puzzles [33], Scratch and mBot

[49] [44], were employed at different context of HEIs.

The integration of CT in a smart learning environment can create

a more supportive platform for teaching/learning of

programming. While the CT is a pedagogical approach adopted

to present learning contents, the SLE allows the modeling of users

to enhance learning process by personalizing, adapting, and

motivating learning.

5.3 Sample cases of CT approach for

programming concepts

In this section, we present some of the CT approaches used to

teach students on how to develop their thinking ability, problem-

solving skills, and improve their programming knowledge. These

cases are adapted from Lagama [34]. The first case of CT

approach used to teach programming concept is about an aged

long historical problem with recreational mathematics. This

problem is called ‘river crossing puzzle.’ This puzzle teaches the

students how to think algorithmically. The storyline to the puzzle

consists a Wolf, a Goat, and a Cabbage. “A farmer has to take all

these items across a river, and the only boat available can

transport the farmer and at most one of his possessions at a time”

(see Figure 7 left). A second case has to do with a mathematical

logic, which is an important aspect of building one’s

computational thinking skill.

Most real-world problems that require computer programming

require logic expressions and operators. A puzzle called ‘a fork in

the road’ was used to introduce logic. The situation is such that

you’ve been out alone for a long walk on the island, and

unfortunately, you got lost. You are very tired, and it’s already

getting dark, at this point you come to a fork in the road with a

conspicuous signpost on the ground, on it is written ‘one road

leads back home and the other road leads to den of venomous

snakes.’ Fortunately, at the fork, there’s a native who will only

1 https://csteachers.org/page/history-of-the-csta-annual-conference

answer a yes/no question for you. But, you do not know whether

the native is a Truth teller or Liar. What question should you ask

to determine with certainty the way back home?

In building problem-solving skills for freshmen, the use of

common and real world-problems enhances their understanding,

to creatively think of computational steps towards a solution.

Among other cases, the examples we adapted shows that CT can

be used to teach programming concepts. Hence, it is important to

design a learning tool that allow users teach/learn programming

concept through CT approach while abstracting problems that are

familier within a context.

6 CONCLUSIONS
Computational thinking has become a fundamental approach to

building problem-solving skills. The use of CT approach to

introduce freshmen to introductory programming courses at the

higher education institutions has been gaining research interest in

the recent past. This study has identified trends and approaches

employed by educators to introduce CT at HEIs and its impact on

students. It was discovered that there is increasing number of

research publications regarding the use of CT to promote

programming education at HEIs since 2017. The research

publication regarding the use of CT for programming education

seems to be more in the US Universities. The possible explanation

for this trend can be linked to the presence of Computer Science

Teachers Association (CSTA) annual conference1 that holds in

the US and has existed for about two decades.

The penetration of CT approach into the higher education

institutions indicates good sign for computing education as it

develops student’s cognitive ability and prepares the freshmen for

the core programming courses. This way, the existing gap

between the students who have programming background and

those without the background can become narrow since CT

teaches the fundamentals of programming concepts. Also, the

educational technologists can use the CT approach to design a

smart learning solution that enhances the students to have a better

learning experience. In fact, we believe that the future of

teaching/learning of computer programming is a SLE with the CT

approach; that provides the opportunity for a more impactful

learning experience. Our future research will be in the direction

of exploring models that employed CT approaches to implement

a SLE to aide teaching and learning of programming education.

7 REFERENCES
[1] C. Chang, “Using Computational Thinking Patterns to Scaffold Program

Design in Introductory Programming Course,” in 5th IIAI International

Congress on Advanced Applied Informatics, 2016.

[2] P. Denning and M. Tedre, Computational Thinking, London: The MIT Press,

2019.

[3] Maleko, M; Hamilton, M; D'Souza, D, “Novices’ Perceptions and

Experiences of a Mobile Social Learning Environment for Learning of

Programming,” in Proceeding in 12th International Conference on

Innovation and Technology in Computer Science Education (ITiCSE), Haifa,

Israel, 2012.

Figure 7: Case 1 & 2 of CT approach. adapted from [34]

https://csteachers.org/page/history-of-the-csta-annual-conference

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

[4] L. Williams, E. Wiebe, K. Yang, M. Ferzli and C. Miller, “In support of pair

programming in the introductory computer science course,” Journal of

Computer Science Education, vol. 12, pp. 197-212, 2002.

[5] S. Dasuki and A. Quaye, “Undergraduate students’ failure in programming

courses in institutions of higher education in developing countries: a Nigerian

perspective,” The Electronic Journal of Information Systems in Developing

Countries , vol. 76, no. 8, pp. 1-18, 2016.

[6] V. Renumol, S. Jayaprakash and D. Janakiram, “Classification of cognitive

difficulties of students to learn computer programming,” Indian Institute of

Technology, p. 12, 2009.

[7] R. A. M. S. Ahmed, S. M. Mahmood, R. M. Nabi and D. L. Hussein, “The

Impact of Teaching Materials on Learning Computer Programming

Languages in Kurdistan Region Universities and Institutes,” Kurdistan

Journal of Applied Research (KJAR) , vol. 3, no. 1, pp. 27-33, May 2018.

[8] I. Stamouli, D. E. and M. Huggard, “Establishing structured support for

programming students,” in In Proceedings of the 34th American Society of

Engineering Education ASEE/IEEE frontiers in Education Conference,

Savannah, 2004.

[9] S. S. Oyelere, J. Suhonen, G. M. Wajiga and E. Sutinen, “Design,

development, and evaluation of a mobile learning application for computing

education,” Educational Information Technolology, Springer, p. 467–495,

2017.

[10] D. D'Souza, M. Hamilton, J. Harland, P. Muir and C. Thevathayan,

“Transforming learning of programming: a mentoring project,” in In

Proceedings of the 10th Australasian Computing Education Conference,

Wollongong, Australia, 2008.

[11] Y. Li, “Teaching Programming Based on Computational Thinking,” in IEEE

Frontiers in Education Conference (FIE), USA, 2016.

[12] J. M. Wing, “Computational Thinking,” Communication of the ACM, vol. 49,

no. 3, pp. 33-35, 2006.

[13] Velázquez-Iturbied, J. Á., “Towards an Analysis of Computational

Thinking,” International Symposium on Computers in Education (SIIE),

Spain, 2018.

[14] V. Barr and C. Stephenson, “Bringing Computational Thinking to K-12: What

is the role of the computer science community,” ACM Introads, vol. 2, no. 1,

pp. 48-54, 2011.

[15] L. Mannila, V. Dagiene, B. Demo, N. Grgurina, C. Mirolo, L. Rolandsson

and A. Settle, “Computational Thinking in K-9 Education,” in Proceedings

of the working group reports of the 2014 on Innovation & Technology in

Computer Science Education Conference, New York, USA, 2014.

[16] B. Liu and J. He, “Teaching Mode Reform and Exploration on the University

Computer Basic based on Computational Thinking Training in Network

Environment,” in The 9th International Conference on Computer Science &

Education (ICCSE) , Vancouver, Canada, 2014.

[17] F. García-Peñalvo and J. Benito, “Computational thinking in pre-university

education,” in TEEM'16 conference, Salamanca, Spain , 2016.

[18] T. Margaria, “From Computational Thinking to Constructive Design with

Simple Models,” in Springer Nature Switzerland AG, Switzerland , 2018.

[19] S. Y. K. J. H. L. Lye, “Review on teaching and learning of computational

thinking through programming: What is next for K-12?,” Journal of

Computers in Human Behavior, vol. 41, pp. 51-61, 2014.

[20] L. Pollock, C. Mouza, K. Guidry and K. Pusecker, “Infusing Computational

Thinking across Disciplines: Reflections & Lessons Learned,” in SIGCSE’19,

Minneapolis, USA, 2019.

[21] L. Araujo, A. W. L. and D. Guerrero, “A Systematic Mapping Study on

Assessing Computational Thinking Abilities,” in IEEE, USA, 2016.

[22] J. Moreno-León and M. Román-González, “On Computational Thinking as a

Universal Skill,” in IEEE Global Engineering Education Conference

(EDUCON), Spain, 2018.

[23] V. Shute, C. Sun and J. Asbell-Clarke, “Demystifying computational

thinking,” Educational Research Review, vol. 22, pp. 142-158, 2017.

[24] A. Repenning, W. D. C. C. Brand, F. Gluck, R. Grover, S. Miller, H.

Nickerson and M. Song, “Beyond Minecraft- Facilitating Computational

Thinking through Modeling and Programming in 3D,” in IEEE Computer

Graphics and Applications, G. Domik and S. Owen, Eds., USA, University

of Colorado Boulder, 2014, pp. 68-71.

[25] M. Philip, V. G. Renumol and R. Gopeekrishnan, “A Pragmatic Approach to

Develop Computational Thinking Skills in Novices in Computing

Education,” in IEEE International Conference in MOOC, Innovation and

Technology in Education (MITE), Jaipur, India, 2013.

[26] M. Tedre, Simon and L. Malmi, “Changing aims of computing education: a

historical survey,” Computer Science Education, pp. 1-29, June 2018.

[27] B. Czerkawski and E. Lyman, “Exploring Issues About Higher Education,”

TechTrends, vol. 59, no. 2, pp. 56-65, 2015.

[28] D. Hickmott, E. Prieto-Rodriguez and K. Holmes, “A Scoping Review of

Studies on Computational Thinking in K – 12 Mathematics Classrooms,”

Digit Exp Math Educ , vol. 4, no. 48, 2018.

[29] P. Morreale, “Connecting undergraduate programs to high school students:

teacher workshops on computational thinking and computer science,” The

Journal of Computing Sciences in Colleges, vol. 25, no. 6, pp. 191-197, 2010.

[30] C. Wellington and R. Ward, “Using video to explore programming thinking

among undergraduate students,” in ACM Consortium for Computing Sciences

in Colleges, 2010.

[31] C. C. Selby, “Promoting Computational Thinking with Programming,” in

WiPSCE ’12, Hamburg, Germany, 2012.

[32] L. Gouws, K. Bradshaw and P. Wentworth, “Computational Thinking in

Educational Activities An evaluation of the educational game Light-Bot,” in

In proceeding of ITiCSE’13, 2013.

[33] E. A. Lamagna, “A Freshman Seminar on Problem Solving and Algorithmic

Thinking,” in Consortium for Computing Sciences in Colleges, USA, 2014.

[34] T. Yuen and K. A. Robbins, “A Qualitative Study of Students' Computational

Thinking Skills in a Data-Driven Computing Class,” ACM Transactions on

Computing Education (TOCE), vol. 14, no. 4, 2015.

[35] B. Kules, “Computational thinking is critical thinking: connecting to

university discourse, goals, and learning outcomes,” Copenhagen, Denmark,

2016.

[36] S. Chatvichienchai, “A Case Study of Computer-based Problem Solving Skill

Development by Using Spreadsheet Software,” in Proceedings of the

International Conference on Digital Technology in Education- ICDTE '17,

Taipei, Taiwan, 2017.

[37] N. Palan, V. Hanson and M. L. S. a. Huenerfauth, “Teaching Inclusive

Thinking in Undergraduate Computing,” in In proceeding of ASSETS'17,

Baltimore, 2017.

[38] K. Boom, M. Bower and A. Arguel, “Relationship between Computational

Thinking and a Measure of Intelligence as a General Problem-Solving

Ability,” in Proceedings of the 23rd Annual ACM Conference on Innovation

and Technology , Cyprus.

[39] H. Yang, P. Martin, D. Satterfield, B. R., J. Wong, M. Shelley and C. K.

Chang, “A Novel Interdisciplinary Course in Gerontechnology for

Disseminating Computational Thinking,” in 41st ASEE/IEEE Frontiers in

Education Conference, Rapid City, SD, 2011.

[40] M. Chandramouli, M. Zahraee and C.-. Winer, “A Fun-Learning Approach to

Programming: An Adaptive Virtual Reality (VR) Platform to Teach

Programming to Engineering Students,” in IEEE International Conference on

Electro/Information Technology, USA, 2014.

[41] P. Silapachote and A. Srisuphab, “Teaching and learning computational

thinking through solving problems in Artificial Intelligence: On designing

introductory engineering and computing courses,” in 2016 IEEE

International Conference on Teaching, Assessment, and Learning for

Engineering (TALE), Bangkok, Thailand, 2016.

[42] P. Padmanabhan, B. Alexander, C. Caiseda, K. McLane, N. Ellanki, P.

Seshaiyer, B. Kwon and E. Massawe, “Design Thinking and Computational

Modeling to Stop Illegal Poaching,” in 2017 IEEE Integrated STEM

Conference (ISEC), Princeton, NJ, USA, 2017.

[43] C. K. Shyamala, C. S. Velayutham and L. Parameswaran, “Teaching

Computational Thinking to Entry-level Undergraduate Engineering Students

at Amrita University,” in 2017 IEEE Global Engineering Education

Conference (EDUCON) , Athens, Greece , 2017.

Koli Calling ’18, November 21–24, 2019, Koli, Finland F. J. Agbo et al.

[44] A. Jung, J. Park, A. Ahn and M. Yun, “CS for ALL: Introducing

Computational Thinking with Hands-on Experience in College,” in

International Conference on Computational Science and Computational

Intelligence, Vegas, United States, 2017.

[45] C. Liu, Y. Cheng and C. Huang, “The effect of simulation games on the

learning of computational problem solving,” Journal of Computers &

Education, vol. 57, no. 3, pp. 1907-1918, 2011.

[46] C. Kazimoglu, M. Kiernan, L. Bacon and L. Mackinnon, “A serious game for

developing computational thinking and learning introductory computer

programming,” Social and Behavioral Sciences, sciencedirect-Procedia, p.

1991 – 1999, 2012.

[47] C. Kazimoglu, M. Kiernan, L. Bacon and L. MacKinnon, “Learning

Programming at the Computational Thinking Level via Digital Game-Play,”

in International Conference on Computational Science, ICCS 2012, 2012.

[48] Ö. Korkmaz, R. Cakir and Ö. M.Y., “A validity and reliability study of the

computational thinking scales,” Computer in human behavior, vol. 72, pp.

558-569, 2017.

[49] M. Romero, A. Lepage and B. Lille, “Computational thinking development

through creative programming in higher education,” International Journal of

Educational Technology in Higher Education, vol. 14, no. 42, pp. 2-15, 2017.

[50] J. Cai, H. Yang, D. Gong, J. MacLeod and Y. Jin, “A Case Study to Promote

Computational Thinking: The Lab Rotation Approach,” in International

Conference on Blended Learning, Switzerland, 2018.

[51] M. Tsai and C. Tsai, “Applying online externally-facilitated regulated

learning and computational thinking to improve students’ learning,” in Univ

Access Inf So, Berlin Heidelberg , 2018.

[52] A. Saad, G. Loewen, T. Shuff and K. Burton, “Supporting Undergraduate

Computer Science Education Using Educational Robots,” in Proceedings of

the ACMSE 2018 Conference, 2012.

[53] A. Settle, “Computational Thinking in a Game Design Course,” in In

proceedings of SIGITE’11, ACM, 2011.

[54] E. Freudenthal, M. Roy, A. Ogrey, T. Magoc and A. Siegel, “MPCT – Media

Propelled Computational Thinking,” in Proceedings of Special Interest

Group on Computer Science Education (SIGCSE) , 2010.

[55] W. Weintrop and U. Wilensky, “Comparing Block-Basedand Text-Based

Programming in High School Computer Science Classrooms,” ACM

Transactions on ComputingEducation, vol. 18, no. 1, 2017.

[56] K. Yeh, Y. Xie and K. F., “Teaching Computational Thinking to Non-

computing Majors Using Spreadsheet Functions,” in ASEE/IEEE Frontiers in

Education Conference , 2011.

[57] R. Almeida and T. Pessoa, “Learning to think like a trainer: bringing Scratch

for Educational Sciences professional’s formation,” in IEEE, 2018.

[58] Vinayakumar R, K. Soman and P. Menon, “CT-Blocks: learning

computational thinking by snapping blocks,” in IEEE, Bengaluru, India,

2018.

[59] R. Vinayakumar, K. Soman and P. Menon, “Fractal Geometry: Enhancing

Computational thinking with MIT Scratch,” in IEEE, Bengaluru, India,

2018b.

[60] H. Y. Durak, “The Effects of Using Different Tools in Programming

Teaching of Secondary School Students on Engagement, Computational

Thinking and Reflective Thinking Skills for Problem Solving,” Technology,

Knowledge and Learning, 2018.

[61] F. Agbo, S. Oyelere, J. Suhonen and M. Tukiainen, “Identifying potential

design features of a smart learning environment for programming education

in Nigeria,” Manuscript submitted to a journal for review, 2018.

