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ABSTRACT

Currently, the diagnosis of sleep disorders relies on polysomnographic recordings
with a time-consuming manual analysis with low reliability between different
manual scorers. Throughout the night, sleep stages are identified manually
in non-overlapping 30-second epochs starting from the onset of the recording
based on electroencephalography (EEG), electrooculography (EOG), and chin
electromyography (EMG) signals which require meticulous placement of electrodes.
Moreover, the diagnosis of many sleep disorders relies on outdated guidelines.
When assessing the severity of obstructive sleep apnea (OSA), the patients are
classified based on thresholds of the apnea-hypopnea index (AHI), i.e. the number
of respiratory disruptions during sleep. These thresholds are not fully based
on solid scientific evidence and remain the same across different measurement
techniques. The AHI does not correlate well with daytime symptoms and severe
health outcomes. Moreover, OSA often leads to sleep fragmentation but its extent is
often neglected in the diagnosis of OSA.

This thesis aimed to improve the diagnosis of sleep disorders by employing
state-of-the-art computational and machine learning methods. The first aim was
to simulate various AHI thresholds and optimize the severity classification with
regards to OSA-related all-cause mortality. The second aim was to develop a
comprehensive deep learning-based method for automatic sleep staging from a
combination of EEG and EOG recordings, from a single-channel EEG, and finally,
from a photoplethysmogram (PPG) measured with a finger pulse oximeter. The
final aim was to implement the developed deep learning-based sleep staging to
evaluate the sleep architecture in more detail to better identify sleep stage transitions
automatically.

This thesis revealed that the current OSA severity classification is not optimal for
assessing the risk for OSA-related all-cause mortality. Instead of the currently used
AHI thresholds (5-15-30 h−1) for mild, moderate, and severe OSA, the combination
of 3-9-24 h−1 would better reflect the risk of all-cause mortality when the AHI
is determined from home-based polygraphic recordings. However, more detailed
measures are required alongside the AHI for a comprehensive assessment of OSA
severity. In the future, automated assessment of sleep fragmentation related to
OSA and other respiratory event-based or hypoxemia-based parameters could
supplement the severity estimation of OSA.

The developed deep learning-based sleep staging method was highly accurate
with both the EEG+EOG combination and with a single frontal EEG channel.
The methods achieved similar reliability as manual scoring in a clinical dataset
of patients with suspected OSA. Moreover, deep learning enabled sleep staging
with a moderate epoch-to-epoch agreement to manual sleep staging from a PPG
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signal measured with a finger pulse oximeter and achieved a reasonably accurate
determination of total sleep time. Deep learning further enabled a more detailed
assessment of sleep architecture and sleep continuity. The more detailed approach
enabled the deep learning-based sleep staging to better reveal the highly fragmented
sleep architecture of individuals suffering from severe OSA.

In conclusion, the results of this thesis demonstrated that the severity assessment
of OSA should be revised, sleep staging can be conducted fully automatically from
even a single EEG channel or a photoplethysmogram and deep learning-based sleep
staging may represent the solution for a more comprehensive assessment of sleep
architecture. The results could significantly enhance the current diagnostic practice
by making the analysis of sleep recordings more efficient and comprehensive while
enabling simpler measurement setups and increasing the clinical usability and
diagnostic value of simple home-based measurements.

National Library of Medicine Classification: W 26.55.A7, WG 141.5.P7, WL 108, WL
150

Medical Subject Headings: Sleep; Sleep Stages; Dyssomnias/diagnosis; Sleep
Apnea, Obstructive/diagnosis; Machine Learning; Deep Learning; Polysomnography;
Photoplethysmography; Oximetry; Electroencephalography; Electrooculography

Yleinen suomalainen asiasanasto: uni (lepotila); unitutkimus; unihäiriöt;
uniapnea-oireyhtymä; tekoäly; koneoppiminen; EEG
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1 Introduction

Sleep is a restorative state essential for physical and mental recovery, memory
consolidation, and the clearance of metabolic waste products from the brain
[1, 2]. However, sleep disorders fragment sleep and decrease sleep quality leading
to excessive daytime sleepiness, impaired vigilance, and various severe health
consequences. One of the most common sleep disorders is obstructive sleep apnea
(OSA) characterized by recurrent obstructions of the upper airways during sleep
[3, 4]. These breathing disruptions often lead to recurrent hypoxemic periods and
arousals from sleep evoking a significant decline in sleep quality and daytime
vigilance [5, 6]. Furthermore, OSA and poor sleep quality are related to decreased
quality of life, an increased risk of traffic accidents, and various comorbidities, such
as cardiovascular diseases [7–9]. Inadequate sleep and sleep disorders are a major
global health problem affecting a large portion of the world’s population and posing
a significant economical burden induced by the related comorbidities, accidents, and
loss of productivity [10].

Despite the high prevalence of sleep disorders, the current diagnostic practice
relies on a time-consuming and labour-intensive manual analysis of an overnight,
in-laboratory recording, polysomnography (PSG). From the PSG, sleep stages are
identified to assess the sleep architecture. Currently, the goal is to manually segment
the night into 30-second epochs with a single sleep stage identified for each epoch.
Sleep is categorized into rapid eye movement (REM) sleep and into three non-REM
(NREM) stages, two of which are considered light sleep (stages N1 and N2) and
a deep sleep stage (N3) [11]. However, as the current manual analysis is based
on multiple recorded signals of electroencephalography (EEG), electrooculography
(EOG), and chin electromyography (EMG), it can take several hours to analyse
the signals from a single patient. Moreover, the arbitrary division of the night
into 30-second epochs with only a single representative sleep stage for each epoch
may cause several transitions between sleep stages being overlooked. This can be
a serious problem when diagnosing sleep disorders. Moreover, the division was
developed based on the sleep of healthy individuals and is a historical remnant
from an era when each 30-second period of the recorded signals was printed on
paper [12,13]. Nonetheless, these outdated practices form the cornerstone for clinical
diagnosis of sleep disorders.

Especially in the diagnosis of OSA, home-based ambulatory polygraphies (PG)
are often used instead of a PSG. The greatest limitation of a PG recording is
the lack of EEG, EOG, and chin EMG [14]. Thus, a manual sleep staging is
impossible and this prevents the assessment of sleep architecture and the diagnosis
of other comorbid sleep disorders. Furthermore, counting the number of breathing
disruptions forms the basis of the diagnosis and the severity assessment of
OSA. Both the complete cessations in breathing (apneas) and partial obstructions
(hypopneas) are combined into a single metric, the apnea-hypopnea index (AHI).
Based on a set of AHI thresholds, the OSA severity is defined and this assessment
often dictates which patient is eligible to receive subsidized treatment [3]. The
sensitivity of the recordings setups has significantly improved over the years and
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the definitions of hypopneas have varied enabling more events to be identified.
Despite these developments, the thresholds used to assess the severity of OSA have
remained unchanged [3, 15].

Deep learning has already been applied to assist in automatic detection and
classification of medical conditions [16, 17]. Deep learning is a machine learning
technique based on multiple layers of artificial neural networks designed to mimic
the biological function of neurons. While the traditional programming paradigm
relies on explicitly stating a solution to a problem with a set of rules, deep learning
is based on automatically learning rules and patterns from a set of examples. This
makes it possible to find solutions to highly complex problems. Deep learning has
already revolutionized tasks such as speech recognition and image classification
[18, 19].

The research included in this thesis was conducted to enhance and optimize
the diagnosis of sleep disorders, with an emphasis on OSA, and provide methods
for automatically and accurately identifying the sleep stages. The research aimed
to optimize the severity classification of OSA so that it would better correspond
to the risk of severe health consequences. Moreover, the aim was to develop deep
learning-based approaches for sleep staging from lighter measurement setups than
a full PSG with either a single EEG channel or a photoplethysmogram (PPG)
measured with a finger pulse oximeter. Finally, we aimed to move beyond the
current sleep staging practice restricted by the non-overlapping 30-second epochs
by analysing sleep architecture with better temporal resolution. One hypothesis was
that by optimizing the AHI thresholds used to assess OSA severity, this would
achieve a better differentiation of patients with an elevated risk of OSA-related
health consequences. Furthermore, we hypothesised that a deep learning approach
would permit sleep staging with a single EEG channel and that sleep staging could
be conducted by relying on PPG. Finally, we hypothesised that a more detailed
analysis of sleep architecture with deep learning not restricted to non-overlapping
30-second epochs would provide a better assessment of OSA-related sleep
fragmentation. We anticipated that with the approaches implemented in this thesis,
we could achieve an optimized severity classification of OSA as well as readily
implementable automatic methods for sleep staging. In this way, these methods
could reduce the clinical workload and improve the diagnostic yield of ambulatory
recordings. The final goal was to devise a novel automatic method capable of
assessing sleep architecture with a better temporal resolution.
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2 Sleep

Sleep can be considered as a reversible mental and physical state characterized by
a lack of physical activity and a degree of unresponsiveness to the environmental
stimuli. However, sleep is not simply the absence of wakefulness; rather, it has its
own internal structure, so-called sleep architecture [11, 12]. Sleep is not a constant
state as there exists variation between different distinct stages following a typical
temporal structure [20,21]. However, various sleep disorders can disturb the natural
sleep architecture causing insufficient and non-restorative sleep further disrupting
daily functioning and causing significant health consequences [5, 22].

The underlying reason why we spend such a large portion of our lifetime asleep
remains largely unknown even though many important functions of sleep have
been discovered. Overall, sleep is a highly restorative state, both physically and
mentally. Sleep is essential for memory consolidation [1], learning and strengthening
of cognitive skills [23], and the recovery and growth of muscles [24]. Furthermore,
sleep, and especially deep sleep, allows the brain to clear out excess metabolic
waste [2]. Conversely, sleep deprivation causes adverse mental and physiological
effects such as impairment of short- and long-term memory [25], alterations
in immunological defence [26], and deterioration of cognitive performance [27].
Moreover, sleep deprivation and untreated sleep disorders have been linked to
depression [28], cardiovascular disease [29], and mood disorders [30].

The following chapters present the basic concepts of sleep architecture and
explain how sleep and sleep disorders can be assessed from biosignal recordings.
The main focus of this thesis is the diagnosis of obstructive sleep apnea. However,
the diagnostic recordings are universal to various sleep disorders. Therefore, a brief
overview of different sleep disorders and their diagnostic approaches is presented
to achieve a more comprehensive representation and to fully illustrate the potential
of the methods developed in this thesis.

2.1 SLEEP ARCHITECTURE

Sleep can roughly be divided into three distinct periods: wakefulness, REM (rapid
eye movement) sleep, and NREM (non-rapid eye movement) sleep. Furthermore,
NREM sleep can further be divided into three stages: N1 and N2 sleep comprising
light sleep, and N3 sleep considered as deep sleep. Previously, deep sleep
was further divided into two distinct stages according to the classification of
Rechtschaffen and Kales [12] but this practice has been abandoned in the current
clinical practice based on the guidelines issued by the American Academy of Sleep
Medicine (AASM) [11].

The sleep architecture is assessed via sleep staging. This involves identifying the
sleep stages from recordings of electroencephalography (EEG), electrooculography
(EOG), and chin electromyography (EMG) assessing the electrical activity of the
brain, movement of the eyes, and chin muscle tone, respectively. According to
current practice, sleep stages are identified in consecutive 30-second epochs and
a single stage is assigned for each epoch [11].
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In the sleep staging, the frequency content of EEG is divided into five categories.
Based on the EEG frequency f , the categories are: 1) slow-wave activity: 0.5 ≤
f ≤ 2.0 Hz with >75 µV peak-to-peak amplitude in the frontal EEG channels; 2)
delta waves: 0 < f < 4.0 Hz; 3) theta waves 4.0 ≤ f < 8.0 Hz; 4) alpha waves:
8.0 ≤ f < 13.0 Hz; and 5) beta waves f ≥ 13.0Hz [11].

Wakefulness is characterized by an alpha rhythm, i.e. trains of alpha waves, in
the EEG when the eyes are closed. With eyes open, EEG activity comprises both
alpha and beta waves with a low amplitude and without the same rhythmicity as
with closed eyes. However, some individuals fail to generate an alpha rhythm or do
so to a limited extent and thus no major differences can be detected between the EEG
activity with eyes open or closed. Moreover, it is common during wakefulness for
eye blinks with conjugate vertical eye movements to occur; these can be detected in
the EOG at a frequency of around 0.5-2 Hz. Furthermore, even rapid eye movements
may be present, but the muscular tone in the chin EMG remains high, differentiating
these movements from those evident in REM sleep. Finally, slow eye movements
may occur during wakefulness but also during N1 sleep [11].

In addition to slow eye movements, the first light sleep stage, N1 sleep, is
characterised by low-amplitude, mixed frequency EEG activity predominately in
the theta frequencies. For most individuals, N1 sleep is the first occurring sleep
stage after wakefulness and defines the sleep onset. As for the chin muscle tone, N1
sleep still has varying chin EMG amplitudes. However, the amplitudes are generally
lower than those encountered during wakefulness [11]. With the onset of N1 sleep,
conscious awareness of the environment slowly decreases [31]. However, the arousal
threshold remains relatively low during N1 sleep and thus external or internal
stimuli can easily lead to awakening [20].

The second stage of light sleep, N2, can be differentiated from N1 sleep by
the occurrence of K-complexes and sleep spindles which are characteristic to the
N2 stage. K-complex is a sharp wave with both negative and positive components
whereas a sleep spindle is a train of sinusoidal waves of 11 − 16 Hz frequency.
Both the K-complex and sleep spindle are identified from the EEG and must have a
duration of ≥0.5 seconds [11]. During N2, the EOG generally does not illustrate
any eye movement activity; however, some individuals still retain the slow eye
movements. As for the chin EMG, the amplitude varies and is usually lower than
during wakefulness [11]. In contrast to N1 sleep, N2 is characterized by a complete
disappearance of conscious awareness [31] and the arousal threshold is higher [20].

The deep sleep stage, N3, is characterized by slow-wave activity (0.5 ≤ f ≤ 2.0
with amplitude >75 µV) visible in the EEG [11]. There are generally no visible eye
movements in the EOG during N3 sleep and thus the EOG signal usually only
displays the same frequencies as the EEG. Moreover, the chin EMG amplitude may
vary, but it is generally lower than during wakefulness and N2 sleep [11]. N3 is the
deepest sleep stage with no conscious awareness and is the most difficult stage from
which to be awakened [20, 31]. N3 is important for memory consolidation [1, 32]
and is essential for the clearance of metabolic waste products from the brain via
cerebrospinal fluid flow [2].

REM sleep is characterized by rapid eye movements (initial deflection <500 ms
in the EOG) resembling those when visually scanning the environment during
wakefulness [11]. These are visible in both EOG channels as concurrent out-of-phase
deflections. The EEG pattern during REM sleep is highly similar to wakefulness
but can illustrate sawtooth waves which are trains of sharp, 2–6 Hz waves with
high amplitude [5, 11]. During REM sleep, transient muscle activity may occur
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and is visible as short bursts of chin EMG activity (<0.25 s); however, the muscle
tone is the lowest of all sleep stages [11]. REM is important for learning and
memory consolidation, especially of procedural and motoric skills and dreaming
also commonly occurs during REM sleep [20, 33–36].

The transition between sleep stages during normal sleep usually occurs in cycles.
First, sleep gradually deepens from N1 and N2 to N3 before first transitioning to
REM sleep after about 70 minutes from sleep onset [33]. After the REM period,
the sleep cycle is repeated and the REM periods occur about 80–120 minutes
after the end of the previous REM period [20, 33, 34]. The first REM period is
usually the shortest with a typical duration of around 5 minutes but the durations
increase during the night [20,33]. Conversely, the duration of continuous N3 periods
decreases throughout the night [5, 20]. Usually, the N3 sleep occurs during the first
sleep cycles, most likely due to the high importance of N3 sleep. Moreover, the
duration of N3 sleep increases after sleep deprivation [20]. Generally, N2 accounts
for most of the sleep, typically around 45–50% of the total sleep time. N1 usually
comprises less than 5% of sleep while N3 represents around 20–25% [20, 34]. REM
usually is responsible for approximately 20-25% of sleep while approximately 5% of
the time between sleep onset and awakening in the morning is spent awake [5,20,34].

Even though sleep stages are defined based on the frequency content in EEG,
they are also reflected in the activity of the autonomic nervous system. When
progressing from wakefulness to deep sleep, the parasympathetic tone increases
progressively while the sympathetic tone decreases [37, 38]. Conversely, REM
sleep typically is accompanied by an increased sympathetic tone and decreased
parasympathetic tone [39]. The periods of wakefulness during the night have a
sympathetic and parasympathetic tone between NREM and REM sleep [40].

2.2 SLEEP DISORDERS

Sleep disorders are divided into six main categories according to the
International Classification of Sleep Disorders (ICSD): sleep-related breathing disorders,
insomnia disorders, circadian rhythm sleep-wake disorders, central disorders of
hypersomnolence, parasomnias, and sleep-related movement disorders [41]. In the
following section, the most common sleep-related breathing disorder, obstructive
sleep apnea, is described. After this, a brief overlook is given on the remaining five
sleep disorder categories.

2.2.1 Obstructive sleep apnea

Obstructive sleep apnea (OSA) is a highly prevalent sleep-related breathing
disorder affecting up to 900 million individuals globally [4]. OSA is characterized
by recurrent respiratory disruptions during the night. Partial obstructions of the
upper airways are called hypopneas while complete cessations in breathing are
called apneas [3]. OSA can cause a significant disruption to sleep quality due to the
recurrent arousals from sleep caused by the respiratory disruptions [3]. Individuals
suffering from OSA have, in general, a more fragmented sleep architecture and
less deep sleep during the night [5, 42]. OSA is also related to various daytime
symptoms; for example, excessive daytime sleepiness and impaired vigilance [6,43].
Furthermore, individuals suffering from OSA generally have a higher risk for traffic
accidents, cardiovascular disease, cancer, stroke, and all-cause mortality [7–9,44–46].
OSA represents not only a major healthcare burden and significant economical
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costs but also indirectly via the downstream health sequelae [10].
An OSA diagnosis mainly relies on an overnight polysomnography (PSG) [11].

However, most likely due to the limited availability and high cost of PSG, many
individuals affected by OSA remain undiagnosed and without treatment [47]. It
has been estimated that 80% of individuals affected with OSA remain untreated in
the USA [48]. This can be a major issue as undiagnosed OSA significantly elevates
the healthcare costs [49]. Moreover, the elevated costs can usually be reduced to
the same level as the general population by successful treatment and the treatment
could also significantly improve the quality of life for the affected individuals [50].
It has been estimated that undiagnosed OSA results in over $6000 annual costs
per person but can be reduced to around $2000 after treatment [48]. To overcome
the limitations related to the attainability of PSG, ambulatory polygraphies
(PG) are occasionally used in the diagnosis of OSA and are even the preferred
diagnostic method in some healthcare systems [51]. However, PG lacks recording
of EEG, impeding the assessment of sleep architecture [14]. A more efficient and
comprehensive diagnosis of OSA without having to rely on an in-lab PSG would be
essential to alleviate the high healthcare burden.

Apnea is defined as an event where the airflow signal amplitude decreases
by over 90% from the baseline and this lasts for ≥ 10 seconds. Conversely,
hypopnea is defined as a ≥ 30% decrease in the airflow signal amplitude for ≥ 10
seconds [11]. Furthermore, hypopnea must be associated with an arousal from
sleep or a ≥ 3% decrease in oxygen saturation [11]. However, there have been
several definitions produced for identifying hypopneas over the years [3, 11, 15].
Previously, hypopnea had to be associated with a ≥ 4% decrease in oxygen
saturation [3] and this definition remains an acceptable alternative [11]. However,
the desaturation threshold significantly affects the number of identified hypopneas
and the 3% desaturation threshold has led to significantly more hypopneas being
identified [52, 53]. It is recommended that apneas are identified using an oronasal
thermal airflow sensor to detect the reduction in airflow whereas a nasal pressure
transducer is used for detecting hypopneas [11].

The main diagnostic parameter to assess the severity of OSA and the necessity of
treatment is the apnea-hypopnea index (AHI) [3,11]. The AHI is calculated from the
overnight recordings as the number of apneas and hypopneas normalized by the
total sleep time or total recording time [3]. Total sleep time is used with PSG while
the total recording time is used with PG as the determination of the total sleep time
is impossible with the conventional manually conducted visual assessment of EEG.
The term respiratory event index (REI) is also used to refer to the AHI derived
from PG [11]. Moreover, arousals from sleep are not identified with the current PG
analysis methods leading to the fact that all of the hypopneas associated only with
an oxygen desaturation are counted while those linked with an arousal from sleep
remain overlooked. Due to these reasons, the AHI values determined based on PSG
and PG can differ significantly [52, 54]. However, in both PSG and PG, the OSA
severity is classified based on the same thresholds of AHI: 5 h−1 < AHI ≤ 15h−1

indicates mild OSA, 15 h−1 < AHI ≤ 30 h−1 indicates moderate OSA, while AHI
≥ 30 h−1 indicates severe OSA [3]. Regardless of large differences between the AHI
derived from PSG and PG, the same AHI thresholds are always used even though
these lack strong scientific foundations and clinical evidence [54, 55].

The most commonly used treatment for OSA is continuous positive airway
pressure therapy (CPAP) [56]. However, while CPAP is highly effective in preventing
the respiratory events and can improve daytime functioning and decrease sleepiness,
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the adherence is low, most likely due to its sleep-disrupting nature (e.g. noise,
uncomfortable fitting, and sweating under the mask) [57]. Weight loss can also assist
in managing OSA and reduce the number of respiratory events [56,58]. Furthermore,
when the majority of the respiratory events occur in the supine position, positional
therapy may be used to prohibit supine position [56, 59]. Moreover, mandibular
devices or surgical approaches are also used [56] and hypoglossal nerve stimulation
has produced promising results [60]. A few pharmacological interventions also
exist but are mainly focused on treating the excessive daytime sleepiness related to
OSA [56].

2.2.2 Other sleep disorders

Aside from OSA, another common sleep-related breathing disorder is central
sleep apnea (CSA). The main difference between OSA and CSA is the occurrence
of central apneas. Central apneas are characterized by a lack of effort to begin
breathing during the respiratory disruptions [61]. The diagnosis of central sleep
apnea follows the same procedure as OSA, and CSA can be differentiated from
OSA based on PSG or ambulatory PG. The treatment of CSA relies on supplemental
oxygen or treating the associated medical problems that may contribute to CSA
(e.g. treating heart failure or reducing opioid-based medications) [61, 62]. Similarly
to the situation with OSA, CPAP may also occasionally alleviate the symptoms [62].

Insomnia is characterized by difficulties in falling asleep, maintaining sleep,
or early awakenings. Insomnia is related to poor sleep quality with a short
total sleep time not explained by environmental factors and restrictions [22].
Short-term insomnia can occasionally occur in up to half of the adult population,
while insomnia together with daytime impairment occurs in 10 to 15% of the
population [63]. The diagnosis of insomnia is based on questionnaires assessing
comorbid disorders and daytime dysfunction together with sleep logs, sleep diaries,
and actigraphy recordings [63]. According to current practices, a PSG is only
used when other sleep disorders, such as sleep apnea, are also suspected or when
the diagnosis or treatment otherwise is inconclusive or insufficient [63, 64]. The
most common treatment for insomnia is cognitive behavioural therapy (CBT) but
pharmacological interventions are used if CBT is not effective [64]. Insomnia often
co-occurs with OSA [65]; however, comorbid insomnia often remains overlooked
when OSA is diagnosed without a PSG-based analysis of sleep architecture.

Circadian rhythm sleep-wake disorders arise from misalignment of the
sleep-wake cycle in relation to the environment and the light-dark cycle. These
may be either caused by intrinsic factors (e.g. non-24h sleep-wake rhythm and
advanced or delayed sleep-wake phase) or by extrinsic, environmentally induced
misalignments (e.g. shift work and jet lag disorders) [41, 66]. The main diagnostic
method to assess circadian rhythm sleep-wake disorders is actigraphy and various
biomarkers such as melatonin secretion onset in dim-light conditions [41, 67].
Commonly, these disorders are treated with either strategically timed melatonin
administration, light therapy, or behavioural interventions [66].

Central disorders of hypersomnolence are mainly caused by abnormalities in
the central nervous system and in controlling the sleep-wake balance [41]. These
manifest as excessive daytime sleepiness despite a normal timing and quality of
sleep and cannot be related to being caused by another sleep disorder [41, 68]. For
example, type 1 and 2 narcolepsy and idiopathic hypersomnia are all characterized
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as an irrepressible need to sleep and excessive daytime sleepiness [41, 68, 69]. The
diagnosis of central disorders of hypersomnolence mainly relies on a multiple
sleep latency test (MSLT) which assesses the extent of excessive daytime sleepiness.
Moreover, actigraphy and sleep diaries are occasionally used to differentiate it
from other sleep disorders causing excessive daytime sleepiness [22, 41]. PSG is
also used and samples of cerebrospinal fluid can be taken to support a narcolepsy
diagnosis [41, 68]. The treatment of these diseases usually focuses on easing the
daytime sleepiness with pharmacological substances [68].

Parasomnias manifest in abnormal, unpleasant, or undesirable activities,
behaviours, or experiences during sleep, at the onset of sleep, or during arousals
from sleep [22, 41]. Moreover, parasomnias encompass NREM-related parasomnias
(e.g. sleepwalking and sleep terrors), REM-related parasomnias (e.g. REM
sleep behaviour disorder and nightmare disorder), and other parasomnias (e.g.
sleep-related hallucinations) [41]. Parasomnias are occasionally associated with
violent and disruptive behaviour and can often result in excessive daytime
sleepiness and have been implicated in many psychiatric and neurological
conditions [22]. When diagnosing parasomnias, a PSG with a video recording
is often used whereas sleep diaries or home video recordings are sometimes
sufficient [70]. The treatment of parasomnias initially focuses on inhibiting the
potential for sleep-related injuries. Furthermore, parasomnias are occasionally
related to other sleep disorders and therefore the treatment of these comorbid
diseases may also ease parasomnia symptoms [71].

Sleep-related movement disorders manifest as involuntary movements during
sleep [41]. These include disorders such as restless legs syndrome and sleep
bruxism [41]. While some of these disorders are characterized by benign, unharmful
movements causing no significant long-term consequences and generally resolving
spontaneously, some may cause physical injury and long term damage (e.g.
tooth wear and headache related to sleep bruxism) [41, 72, 73]. In the diagnosis
of sleep-related movement disorders, it is crucial to be able to differentiate
sleep-related movement disorders from other sleep disorders, especially from
parasomnias. Thus, a PSG with a video recording is required in many instances
while occasionally actigraphy, sleep diary, or EMG recording with audio may
be sufficient [74, 75]. Treatment approaches are chosen according to the specific
disorder; for example, sleep bruxism treatment focuses on preventing tooth wear
while the treatment of restless legs syndrome relies on behavioural therapy and an
improvement of sleep hygiene or on pharmacological substances [75]. Furthermore,
sleep bruxism may occur alongside OSA in which case oral appliances used to
prevent tooth wear are not applicable as they could further disrupt breathing [75].

In conclusion, while other diagnostic measurements and questionnaires exist,
in-laboratory PSG is the most extensive method in sleep disorder diagnostics and
remains the gold standard. Moreover, sleep staging from signals measured during
a PSG forms the cornerstone of diagnosis.
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2.3 BIOSIGNAL RECORDINGS

2.3.1 Polysomnography

The cornerstone of diagnosing sleep disorders is PSG utilizing a comprehensive
measurement setup. To conduct the sleep staging, the electrical activity of the
brain is measured via EEG, the eye movements via EOG, and the muscle tone
via chin EMG. Additionally, a PSG includes the recording of photoplethysmogram
(PPG) via a finger pulse oximeter which is also used to derive the blood
oxygen saturation. Moreover, PSG commonly includes recordings used to
assess respiratory effort (respiratory inductance plethysmography of thorax and
abdomen), airflow (thermocouple, thermistor, and nasal pressure transducer),
cardiac activity (electrocardiography, ECG), sleeping position (accelerometers or
gravitation sensitive switches), the activity of the skeletal muscles in the legs (EMG),
snoring sound (microphone or piezoelectric sensors). Finally, PSG also usually
includes a video recording of the whole night [11, 76].

Electroencephalography

The EEG is used to record the electrical activity of the brain. In PSG, EEG
is measured noninvasively using multiple electrodes positioned on the scalp to
identify the synchronous electrical potential over numerous neurons [77]. While
EEG may lack the spatial resolution of the imaging techniques such as functional
magnetic resonance imaging, it has superior temporal resolution making it ideal
for sleep staging [78]. In PSG, EEG is measured using the frontal (F4-M1), central
(C4-M1), and occipital (O2-M1) derivations with the placement conducted according
to the International 10-20 System [79] (Figure 2.1). These are considered the
minimum required channels but usually, backup electrodes (F4, C3, O1, and M2)
are additionally used to provide substitutes in case of electrode malfunction [11].

The origin of the EEG signal lies in the synaptic activity of the neurons in the
cerebral cortex. Each synaptic activity generates a small electrical impulse called the
postsynaptic potential [77]. It is impossible to detect the postsynaptic potential of a
single neuron with measurements conducted on the scalp; however, the synchronous
postsynaptic potential of numerous neurons generates an electric field that can be
measured with electrodes placed on the scalp [80]. The measurable potential is
relatively small i.e. in the magnitude of microvolts; thus, an amplifier is required
for signal collection [81].

The EEG signal from an electrode is represented as the difference in electrical
potential to a reference electrode. A ground electrode can additionally be used for
signal processing, for example, to prevent power line noise and amplifier drift [80].
Moreover, the electrodes typically demand the application of an electrolyte gel
between the electrode and the skin. This is required as the electrochemical properties
of the electrode-gel and gel-skin junctions lead to a steady electrical potential and
impedance between the measured tissue and the measurement device [81].

Typically, EEG is recorded with a sampling frequency between 200 and 1000
H but even up to 5000 Hz frequencies can be used depending on the studied
features [82]. In sleep studies, the minimum required sampling frequency is 200 Hz
but an over 500 Hz sampling frequency is recommended [11]. After amplification,
analog filtering can be implemented; however, digital filtering is often preferred to
avoid losing any raw data [83]. In sleep studies, a high-pass filter with a 0.3 Hz and
a low-pass filter with a 35 Hz cut-off frequency are recommended [11].
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Figure 2.1: The electrode placement used in sleep staging for
electroencephalography (EEG), electrooculography (EOG), and chin
electromyography (EMG).

Electrooculography

EOG is used to capture eye movements. The basic principle behind EOG is that the
eye can be considered as a dipole with a positive pole at the cornea and negative
pole at the retina leading to a steady electric potential field. With eye movements,
the position of the negative and positive poles change. In other words, the retina
moves closer to one electrode while the cornea moves to the opposing electrode.
Thus, the orientation of the dipole changes causing an alteration in the potential
field leading to a measurable EOG signal [84]. For sleep staging purposes, the EOG
is recorded with electrodes placed 1cm lateral and above the outer canthus of the
left eye and 1 cm lateral and below the outer canthus of the right eye (Figure 2.1).
Both are then referenced to the M2 electrode. This electrode positioning results in
the out-of-phase deflections in the EOG with conjugate eye movements. In sleep
studies, EOG is recorded with a minimum sampling frequency of 200 Hz but 500
Hz is recommended. Similarly to EEG, band-pass filtering between 0.3 Hz and 35
Hz is recommended. During sleep staging, the EOG measurement can be used to
detect both slow and rapid eye movements [11].

Electromyography

Submental EMG is recorded to assess the electrical potential generated by muscle
cells in the chin [76]. The chin EMG recording setup used for sleep staging consists
of three electrodes. One electrode is placed 1 cm above the inferior edge of the
mandible in the midline. Two electrodes are then placed symmetrically to 2 cm
on the left and right sides. Moreover, the position of these two electrodes is 2 cm
below the inferior edge of the mandible (Figure 2.1). The electrodes on the sides
are referenced to the electrode in the middle. Either one of the derived channels
is then used in sleep staging to assess the muscle tone. An EMG is required
when identifying REM sleep. Similarly to EEG and EOG, the minimum sampling
frequency is 200 Hz with 500 Hz as the recommendation. The EMG is filtered with
10 Hz high-pass and 100 Hz low-pass filters [11].
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Photoplethysmography

Photoplethysmography (PPG) measures blood volume changes in tissue via optical
sensors and light sources in a pulse oximeter [85]. The basic principle behind PPG
is the absorption of light in hemoglobin. Generally, the other tissue components
reflecting and scattering light do not vary in time. Thus, the absorption depends on
changes in the blood volume within the measured tissue [86].

There are two ways to measure PPG: transmissive and reflective. Transmissive
PPG is measured by placing the light detector directly across the light source and
measuring the intensity of the transmitted light through the tissue. In reflective
PPG, the light detector is placed near the light source to measure the intensity
of back-scattered light [85, 86]. Typically, a pulse oximeter employs two different
wavelengths: one infrared at around 940 nm and one red with around 660 nm
wavelength. The infrared light provides a more stable signal over time whereas the
red is more sensitive to changes in the oxygen concentration bound to hemoglobin
in the blood volume [85]. Typically, the PPG signal produced by commercial
pulse oximeters is the one formed with infrared light and it is typically heavily
preprocessed in the hardware [85]. The blood oxygen saturation can be derived
from the PPG as oxyhemoglobin absorbs less red and more infrared light whereas
deoxyhemoglobin absorbs more red and less infrared light [86].

During sleep studies, the PPG signal is mainly used to derive the blood oxygen
saturation; for example, this is of critical importance in diagnosing OSA. However,
PPG contains a plethora of other information that has mainly been neglected after
discovering its properties in deriving blood oxygen saturation [85]. Aside from
providing a way to estimate the heart rate via changes in the blood volume caused
by arterial pulsations, PPG reflects the autonomic activity [87, 88]. Moreover, the
declines in the pulse wave amplitude in PPG are correlated to cortical activity during
sleep. Variations in the spectral components of EEG during arousals from sleep are
also measurable in PPG [87].

2.3.2 Portable sleep monitoring

While PSG is considered as the most comprehensive method to diagnose sleep
disorders and is used as the gold standard reference method to assess sleep,
it suffers from its high cost, the large amount of manual work required, and
its limited availability [14]. Moreover, PSG can have a negative impact on sleep
quality due to sleeping in an unfamiliar environment with multiple electrodes
and sensors attached [89]. Therefore, portable, unattended monitoring devices are
also often used to conduct recordings in a home environment. These ambulatory
polygraphies (PG) are mainly used in OSA diagnostics and are thus also called
respiratory polygraphies or home sleep apnea tests (HSAT). In some healthcare
systems, mainly in Europe, these are even the preferred diagnostic method over the
in-laboratory PSG [51].

The main difference between PG and PSG is that PG lacks the recording of
EEG. As PG is mostly used in diagnosing OSA, it commonly includes a PPG
recording used to determine the oxygen saturation. In addition, the recordings of
airflow, respiratory effort, and ECG are also often included. Other signals such as
audio, leg EMG, and body position may also be recorded but these vary between
manufacturers [14, 90].

11



While PG can be used for a reasonably accurate diagnosis of OSA, especially
when the pre-test probability is high [91], the lack of EEG recording is the most
significant limitation. Since the EEG is not recorded, currently the sleep architecture
cannot be assessed in any meaningful way. This also prohibits an identification of
arousals from sleep and the total sleep time cannot be defined. In OSA diagnosis,
this manifests in missing all the arousal-related hypopneas and the inability to
determine the total sleep time. These shortcomings cause the determined AHI
values to differ significantly from those based on PSG [52,54,92]. Nonetheless, there
have been developments in ambulatory systems recording EEG with self-applicable
electrode sets enabling inexpensive and simple recording of EEG in a home
environment [93–97]. However, these are not yet widely used clinically.

2.3.3 Actigraphy

Actigraphy relies on a small wrist-worn device monitoring movements based on
an accelerometer. The main advantage of actigraphy over a PSG is the simplicity
and the capability to easily monitor over extended periods. However, actigraphy
only provides an estimate for the sleep/wake patterns and cannot provide insights
into the sleep architecture. Actigraphy is currently the preferred method for the
long-term monitoring of sleep and assessing sleeping behaviours and sleep hygiene.
It is especially useful when diagnosing circadian rhythm sleep-wake disorders,
insomnia, or hypersomnias [98,99]. In addition to failing to assess sleep architecture
or arousals from sleep, actigraphy has low specificity and tends to significantly
overestimate sleep duration in situations when the individual is lying still but awake
in bed [98, 100, 101]. Therefore, while useful for many purposes, actigraphy fails to
assist in diagnosing those sleep disorders requiring a more accurate representation
of sleep.
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3 Deep learning

Deep learning is a class of techniques and methods belonging to the broader context
of machine learning and artificial intelligence [18]. Deep learning relies on artificial
neural networks that take their inspiration from the functions and information
processing of neural systems. In traditional programming and problem-solving, the
goal is generally to state the solution explicitly based on a set of rules and processes.
In contrast, the goal of deep learning is to develop systems and computational
architectures that can adapt and learn directly from observational data and
information [102].

Deep learning algorithms can roughly be divided into three categories:
supervised learning, unsupervised learning, and reinforcement learning.
Supervised learning relies on a set of training data that includes an input
with a set of labels. The goal of supervised learning is to devise an algorithm
capable of learning the features in the input data associated with each label [18, 19].
Examples of supervised learning include classification of images or identification
of sleep stages from signals such as EEG. Conversely, unsupervised learning does
not employ labels or targets but the goal is to independently learn useful properties
and structure in the dataset, for example, group variance [19]. These algorithms
include the cluster analysis of data. In reinforcement learning, the aim is to develop
a software agent learning and performing a task in an environment based solely
on trial and error, without any external guidance [19, 103]. The agent learns to
function in the environment in order to maximize the notion of cumulative reward
or minimize the penalty [103]. Reinforcement learning is often used in robotics and
in tasks such as learning to play games.

In the following sections, a brief overview of the basic concepts of feedforward
neural networks in the context of supervised learning are provided. Subsequently,
the two main components of deep learning utilized in this thesis, convolutional
neural networks and recurrent neural networks, are presented.

3.1 FULLY CONNECTED FEEDFORWARD NEURAL
NETWORKS

The goal of a fully connected feedforward neural network is to learn how to
approximate an arbitrary function f ∗ based on a set of data. Therefore, a neural
network defines a mapping

y = f (x; θ), (3.1)

where θ represents the parameter values. The network learns and optimizes these
parameters in order to achieve the best approximation of the function f connecting
the input x to the output y [19]. For example, the goal of a classification task
(e.g. identifying sleep stages) is to map an input x (e.g. EEG signal segments) to
a category y (e.g. sleep stage). Moreover, the networks are generally represented by
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concatenating numerous functions in a chain structure

f (x) = f (n) ◦ f (n−1) ◦ ... ◦ f (2) ◦ f (1)(x), (3.2)

where f (i) is the ith layer of the network and n is the number of layers that define
the depth of the network. Moreover, the first layer must match the dimensionality
of the input data while the final layer of the network is the output layer, providing
the class label in classification problems. The layers between the first and last layer
are generally called hidden layers [19]. The function compositions form a network
with a certain depth leading to the terms "neural network" and "deep learning"
being used. The definition of when a neural network can be considered as a deep
neural network or as deep learning is somewhat vague. Historically, neural networks
comprised a single hidden layer; thus, neural networks with more than two hidden
layers are often considered as deep neural networks but more layers are commonly
used [102].

In the equation (3.2), each hidden layer in the network defines a mapping
f (i) : Rn → Rm. However, instead of interpreting a single layer as a vector-to-vector
operation, these can be interpreted as m number of parallel units (neurons) each
forming a σ : Rn → R vector-to-scalar function. That is, in a fully connected neural
network, every neuron receives an input from all the neurons in the previous layer
and operates on these to provide a single output, which is then passed to all the
neurons in the following layer. This procedure is inspired by the biological function
of neurons where the activation of a single neuron depends on the signals (electrical
impulses) received from its multiple dendrites via synaptic connections of varying
strengths to other neurons. Upon activation, the neuron outputs a signal along its
single axon which eventually branches and connects to the dendrites of multiple
other neurons. With neural networks, the activation al

i of a single neuron i in a layer
l can be presented mathematically as

al
i = σ

(
∑

j
wl

i,jx
l−1
j + bl

i

)
, (3.3)

where σ is the nonlinear activation function, the sum is over all the single neurons j
in the previous (l− 1)th layer, wi,j is the weight between the neuron i in the lth layer
and neuron j in the (l − 1)th layer, xl−1

j is the input originating from the neuron j in

the previous layer, while bl
i is the bias offset induced by the neuron [19, 102]. As the

input x to a neuron is defined by the activation of the neuron in the previous layer,
the activation of a single layer of neurons can be further written in a more compact
matrix form as [102]

al = σ
(

wlal−1 + bl
)

. (3.4)

The final activation of the neural network is calculated by propagating the activation
of all the layers to the following layers, similarly to the function compositions in
equation (3.2).

In the most simplified form, activation of a single neuron can be presented by a
perceptron [104]

a =

{
0, if ∑n

i=1 wixi ≤ b
1, if ∑n

i=1 wixi > b. (3.5)

However, perceptrons are seldom used due to their binary output [102]. More
common nonlinear activation functions in the hidden layers include the hyperbolic
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tangent (tanh) function and rectified linear unit (ReLu = max(0,x)). In the final layer
of classification problems, usually either the sigmoid function σS(x) = 1/(1 + e−x)
or softmax function is used. Of these, the softmax normalizes the output into a
probability distribution illustrating the probabilities of each class in a single input
[19].

The learning process of the neural network relies on the gradient-based
minimization of a cost function. During training and after evaluating a single input
with the neural network, a cost function maps the output of a model to a scalar
value representing the difference between the output and the desired outcome, e.g.,
the class label. One possibility to define the cost for a single input xk is with the
mean squared error which can be written as

Ck(θ) =
1
2
||yk − f (xk; θ)||2, (3.6)

where yk is the desired output of the network and f (xk; θ) is the output of the neural
network with the input data x and internal parameters θ [19,102]. The cost function
for the whole neural network then becomes

CMSE(θ) =
1
N

N

∑
k=1

Ck(θ), (3.7)

where N is the total number of training inputs [102]. With this notation, the aim and
learning process of the network become clear: the goal is to modify the parameters
θ (weights and biases related to neurons) such that the cost function C(θ) becomes
minimized. However, it must be noted that the mean squared error may not be best
suited to classification problems which deal with a set of known class labels and can
suffer from the learning slowing down. Instead, cross-entropy may be often better
suited, and can be presented as [102]

CCE(θ) = −
1
N

N

∑
k=1

[yk ln f (xk; θ) + (1− yk) ln(1− f (xk; θ))] . (3.8)

The main advantage of cross-entropy is that it applies a larger loss whenever there
is a large difference between the desired output y and the predicted value f (x; θ).
Thus, it is capable of better handling the slowing down of learning compared to
mean square error in classification problems.

After the forward pass where the input is fed through the neural network
and the value of the cost function is calculated, back-propagation is implemented.
Back-propagation is used to allow the information of the cost to flow backwards
through the network and to compute the gradient which is then used to update
the parameters θ. The actual learning process is then conducted by changing
the network parameters θ to minimize the cost. This is done by changing the
parameter values towards the negative gradient of the cost function [19, 102].
This can be implemented using algorithms such as stochastic gradient descent
(SGD). Calculating the cost and changing the parameters after each input has been
propagated through the network is often impractical and tends to halt the training
process at local minima instead of the global minimum [19]. Therefore, in SGD, the
input data is fed into the network in batches and the overall cost of the batch is
calculated and back-propagated. Moreover, updating the parameters of the network
occurs by taking a small, predefined step towards the negative gradient. This step
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size is defined as the learning rate of the neural network. Updating the parameters
of the network is then conducted as

θi+1 = θi − α∇C(θi), (3.9)

where θi are the parameter values at propagation i, α is the learning rate, and C(·)
is the chosen cost function. Moreover, to avoid a termination of the learning at the
local minima of the cost function, the SGD can be further supplemented with a
momentum term or with adaptive algorithms such as RMSProp or Adam [19].

When developing neural networks, the dataset is generally divided into training,
validation, and test sets. The training set is used for the actual learning process,
meaning that it is used both for forward pass and back-propagation. The validation
set is used to evaluate the performance of the network during training. After each
batch of the training set is fed into the network and the parameters are optimized,
the validation set is passed forward through the network and the value of the
cost function is calculated [102]. However, the back-propagation process is not
conducted for the validation set and it is not used to optimize the parameters. The
validation set provides a measure of the network performance during training and
can be used to choose the optimal model and avoid overfitting the network to the
training data. Finally, the test set is used only once to measure the performance and
generalisability of the final deep learning model. Occasionally, and especially with
smaller datasets, k-fold cross-validation is also used. In this process, the dataset
is partitioned into k subsets and one subset is used as the validation set with the
remaining subsets utilized as the training set. The training process is then repeated
k times until all the partitions have been used once as the validation set [19].

3.1.1 Convolutional neural networks

In contrast to the fully-connected neural networks described in the previous section,
convolutional neural networks (CNNs) replace the matrix multiplication between
the weights and inputs in at least one of the layers with a convolution operation.
Therefore, it is specialized for data with a known grid-like topology, such as 1D
time-series or images with a 2D grid of pixel values. The biological inspiration
behind CNNs is the function of the visual cortex; this brain region functions based
on a spatial map where neurons only respond to stimuli in a certain region, with
these regions overlapping between multiple neurons [19].

CNNs are commonly based on four different types of layers: convolutional layers,
activation layers, pooling layers, and fully connected layers. The main operation
performed in a convolutional layer is a discrete convolution between two matrices:
the input matrix I and the kernel matrix K of the layer. The kernel comprises the
parameters that are changed during the training. In a generalized form, the discrete
convolution can be defined as

( f ∗ g)(i) =
∞

∑
a=−∞

f (a)g(i− a), (3.10)

where f and g are functions defined only at discrete integer values i [19].
In convolutional networks, the convolutions can be conducted with different
dimensionalities of the input data, for example, 1D in the case of time series, and 2D
with images. In these cases, the convolution between the input matrix I and kernel

16



K can be written as

S(i) = (K ∗ I)(i) = ∑
m

I(i−m)K(m), (3.11)

in the 1D case, and

S(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i−m, j− n)K(m, n), (3.12)

in the 2D case. From these expressions, the convolution operator can also be
interpreted as sliding the kernel across the whole input and calculating the
product or cross product with the input in each position. Moreover, to ease the
computational load, it is possible to skip some positions when moving the filter.
This number of positions skipped is called stride and implementing it will both
reduce the computational load and downsample the output of the convolutional
layer [19].

After each convolutional layer, an activation layer is required. These function
in the same way as occurs in fully connected feedforward networks and the same
activation functions are applicable. Many CNN architectures include additional
pooling layers after some of the activation layers. Pooling layers are used to
downsample the output of the previous layer by calculating summary statistics
of nearby outputs. Max-pooling is often used and outputs the maximum value of
adjacent outputs [19]. Similarly, global average pooling can be used, but instead
of outputting statistics from adjacent outputs, it outputs the average from over
one whole data dimension. Global average pooling is often applied to replace
the fully connected layers used to generate the output after the complete CNN
architecture [105].

One of the main advantages of CNNs is the ability to combine the information
of adjacent input values. For example, with time-series data, the adjacent values
in the signal are usually connected. Similarly with 2D images, the adjacent pixel
values are usually related to one another. Fully connected neural networks rely
on matrix multiplication operations between neurons in adjacent layers, meaning
that every individual neuron in a layer interacts with every unit in the preceding
and following layers. CNNs, however, enable sparse connectivity, leading to better
computational efficiency while still detecting meaningful features in smaller subsets
of the complete input to the layer [19]. This further enables the implementation
of deeper networks than can be achieved with fully-connected layers. CNNs have
provided state-of-the-art results in many complex tasks, for example, they have
surpassed previous image classification algorithms [18].

3.1.2 Recurrent neural networks

Recurrent neural networks (RNNs) are specialized in handling sequential data.
While CNNs process data with a grid-like topology, RNNs process a sequence of
data, for example, a sequence of 1D values in the case of a time-series or a sequence
of 2D images from a video recording. The advantage of RNNs over CNNs is their
scalability to longer sequences and their capability to natively handle sequences of
variable lengths.
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In contrast to feedforward networks where the input only flows forward, RNNs
enable recurrent feedback connections. In its simplified form, the state h of the
hidden units in the RNN can be written as a dynamical system

h(t) = f
(

h(t−1), x(t); θ
)

, (3.13)

where the state at t depends also on the previous states [19]. Additionally, RNNs
usually incorporate output layers using the states of the hidden units to make
predictions based on the input.

One of the most effective types of RNN is called gated RNN which relies on
creating paths for the gradient to flow during back-propagation. These are aimed
at more efficient learning and avoiding the issue of a vanishing gradient [19]. The
most commonly used gated RNNs are the long short-term memory (LSTM) [106]
and gated recurrent unit (GRU) networks [107].

LSTM networks are based on LSTM cells that have both recurrent connections
between cells, but also self-loops to enable gradient flow. Aside from having similar
inputs and outputs for each cell as in regular RNNs, LSTMs introduce gating units
to control the information flow. The main components of the LSTM network are the
forget gate, the external input gate, and the output gate. All these gates have their
own parameters and weights and affect the output of the network. The forget gate
unit f (t)i is used to control the self-loop weight, and can be written for cell i at time
step t in the form of

f (t)i = σ

(
b f

i + ∑
j

U f
i,jx

(t)
j + ∑

j
W f

i,jh
(t−1)
j

)
, (3.14)

where σ is often chosen as the sigmoid function, h contains the hidden unit states
and all the outputs of the cells at the time step and b f contains the bias terms, U f

the input weights, and W f the recurrent weights for the forget gates [19]. Similarly,
the external input gate g(t)i has its own parameters for each cell and can be written
as

g(t)i = σ

(
bg

i + ∑
j

Ug
i,jx

(t)
j + ∑

j
Wg

i,jh
(t−1)
j

)
. (3.15)

The output gate q(t)i can similarly be written as [19]

q(t)i = σ

(
bq

i + ∑
j

Uq
i,jx

(t)
j + ∑

j
Wq

i,jh
(t−1)
j

)
. (3.16)

Due to the sigmoid function σ , all the gates obtain values between 0 and 1 and
determine the weights affecting the state of the cells and output of the network. The
forget gate f (t)i and the external input gate g(t)i determine the internal state of the
LSTM cell. The forget gate sets the weight for the previous state of the LSTM cell,
while the external input gate sets the weight for all of the external input. With these,
the internal state s(t)i of a single LSTM cell can be written as

s(t)i = f (t)i s(t−1)
i + g(t)i σ

(
bi + ∑

j
Ui,jx

(t)
j + ∑

j
Wi,jh

(t−1)
j

)
, (3.17)
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where b, U, and W are the biases, input weights, and recurrent weights of the LSTM
cell, respectively [19]. The output h(t)i of the LSTM cell depends on the state of

the cell which is then regulated by the output gate q(t)i . With a hyperbolic tangent
activation, the cell output can be written as [19]

h(t)i = tanh
(

s(t)i

)
q(t)i . (3.18)

In conclusion, a single LSTM cell has its own parameters (bias, input weights, and
recurrent weights) and parameters for each of the gates (forget, external input, and
output). The learning process is regulated by the gates and these enable the flow
of the gradient across the network thus improving the training process. Finally, it
is should be noted that this chapter only describes a single version of the LSTM as
other variations do exist.

GRUs are essentially similar to LSTMs but are designed to remove less important
components of the LSTM. Therefore, the main difference between GRU and LSTM
is that a GRU employs only a single gating unit that simultaneously controls the
forgetting factor that determines the effect of previous states and the weight for
updating the state unit [19]. The GRU cell only relies on an update gate u(t)

i and a
reset gate r(t). The expressions for these gates are

u(t)
i = σ

(
bu

i + ∑
j

Uu
i,jx

(t)
j + ∑

j
Wu

i,jh
(t−1)
j

)
, (3.19)

and

r(t)i = σ

(
br

i + ∑
j

Ur
i,jx

(t)
j + ∑

j
Wr

i,jh
(t−1)
j

)
. (3.20)

These can then be used to write the updated equations for the GRU cells as [19]

h(t)i = u(t−1)
i h(t−1)

i +
(

1− u(t−1)
i

)
σ

(
bi + ∑

j
Ui,jx

(t)
j + ∑

j
Wi,jr

(t−1)
j h(t−1)

j

)
. (3.21)

Aside from enabling information from past values to affect the current state,
it is also possible to develop RNNs that depend on the whole input sequence
containing both the past and the future states. These RNNs are called bidirectional
RNNs and combine two RNNs: one moving forward through time, starting from
the beginning of the sequence and another moving in the opposite direction from
end to start [19]. These can be especially useful for tasks such as speech recognition
where the correct interpretation of a single word may depend on both previous and
future contexts. Overall, RNNs have been exploited extremely successfully in tasks
with long-term dependencies and sequential structure, such as natural language
processing, handwriting recognition, and generating text or music [18, 19].
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3.2 APPLICATIONS IN MEDICINE

Deep learning applications in medicine have mainly focused on a more efficient
and accurate diagnosis of medical conditions. Deep learning-based algorithms
have especially excelled in analysing and interpreting medical images [108]. These
methods have been able to reach the accuracy of expert dermatologists in diagnosing
skin cancer and in differentiating between malignant and benign skin lesions [17].
Similarly, automatic identification and severity assessment of osteoarthritis from
radiographs have been conducted based on a deep learning methodology [16]. Deep
learning has also been successfully applied to automatically analyse biosignals.
For example, deep learning has enabled ECG-based identification of arrhythmias,
achieving a similar accuracy as a cardiologist [109] and even identifying patients
with an elevated risk of developing ventricular dysfunction in the future [110].

Deep learning applications also exist in sleep medicine [111]. For example,
machine learning methods have enabled an accurate determination of the AHI
[112] and classification of OSA severity [113] from the oxygen saturation signal
while a CNN-based analysis has been able to detect apnea and hypopnea events
in a pediatric population [114]. Moreover, deep learning has been exploited to
achieve an automatic diagnosis of type-1 narcolepsy with a high specificity [115].
A deep learning-based analysis of EEG signals has also been able to identify
insomnia patients with a high accuracy [116] and unsupervised machine learning
methodology has been applied to cluster OSA phenotypes based on PSG recordings
[117].

Recently, there have been attempts made to conduct automatic sleep staging
based on EEG, EOG, and chin EMG recordings with deep learning (Table
3.1). The more traditional approaches have relied on simple machine learning
classification algorithms using a set of extracted features from the signals [118–120];
however, there has been more and more interest in developing approaches using
deep learning [121–131]. These approaches have surpassed previously developed
automatic methods. However, these deep learning approaches have also often
relied on a heavy preprocessing of the input data and artificially transforming
the 1-dimensional signals into 2-dimensional spectrograms [123, 126, 128, 130] or
several predefined features extracted from the signals [129, 131] instead of utilizing
the full potential of CNNs and RNNs in an end-to-end fashion. Additionally, the
deep learning approaches have generally relied on research datasets of healthy
individuals and have suffered from a low generalization to clinical populations
[128]. Additionally, there have been promising deep learning-based sleep staging
approaches utilizing only a single EEG-channel [121–125, 132, 133]. While these
almost attain the accuracies of multi-channel approaches, they suffer from the same
issues. Large clinical datasets collected during the normal clinical inflow of patients
have rarely been used and the effect of sleep disorders on sleep staging has not been
thoroughly investigated.

To avoid the laborious EEG recording that requires meticulous placement of
electrodes, attempts have been made to exploit deep learning-based approaches to
identify the sleep stages based on ECG [134–137]. These have usually relied on heart
rate variability (HRV) characteristics [134, 137] combined with either respiratory
effort [135] or actigraphy [136, 137]. Recently, there have also been attempts made
to classify sleep stages based on photoplethysmogram (PPG) signals [138–142].
However, these have exploited more traditional machine learning classifiers and
manual feature selection instead of relying on deep learning (Table 3.2) and
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have mainly been based on substituting the ECG recording with PPG in the
HRV estimation. Furthermore, the best performing approaches rely on additional
actigraphy recording instead of relying solely on the PPG. Most of the approaches
that have been attempted to assess sleep without EEG recording have focused on
differentiating between wakefulness and sleep or identifying NREM and REM sleep.
Thus, important parts of the sleep architecture remain overlooked, hindering their
applicability to clinical populations. Moreover, the developed approaches have not
reached a similar performance as manual analysis or EEG-based automatic methods.

Table 3.1: Summary of the most notable and successful previous approaches for
automatic sleep staging based on deep learning.

Method Input Dataset Accuracy

Phan et al. [132]
Sequence-to-

sequence
RNN

Fourier
transform of a

single EEG channel

153 PSGs
of healthy adults
from Sleep-EDF

82.6%

Phan et al. [126]
Sequence-to-

sequence
RNN

Fourier
transform of

EEG, EOG, and
chin EMG channels

200 PSGs
of healthy

adults from
MASS

87.1%

Supratak et al. [122]
Combined
CNN and

LSTM

EEG referenced
to EOG (MASS), or

a single EEG
channel (Sleep-EDF)

200 PSGs
from MASS and

39 PSGs
from Sleep-EDF

86.2%
and

82.0%

Mousavi et al. [121]

Sequence-to-
sequence
CNN and

RNN

Single EEG channel
153 PSGs

of healthy adults
from Sleep-EDF

80.0%

Patanaik et al. [128] CNN

Fourier
transform of

EEG and EOG
channels

Research and
clinical PSGs of
459 individuals

72.1%-89.8%

Biswal et al. [130]
Combined
CNN and

RNN

Spectrogram
of EEG and

EMG channels

>10 000 clinical
and research

PSGs

87.6%

Sleep-EDF [143,144] and Montreal Archive of Sleep Studies (MASS) [145] are publicly available open-access
datasets. CNN = convolutional neural network, RNN = recurrent neural network, LSTM = long short-term
memory network, EEG = electroencephalography, EOG = electrooculography , EMG = electromyography,
PSG = polysomnography. In Patanaik et al. [128] the clinical datasets included patients with Parkinson’s
disease or with suspected sleep disorders. In Biswal et al. [130], the clinical dataset included patients with
suspected sleep disorders
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Table 3.2: Previous studies conducting automatic sleep stage classification based on
photoplethysmogram (PPG).

Method Recordings Dataset
2-stage

accuracy
3-stage

accuracy
4-stage

accuracy

Fonseca et al. [138]
Linear

discriminant
classifier

PPG and
accelerometer

165
healthy
adults

92% 73% 59%

Beattie et al. [139]
Linear

discriminant
classifier

PPG and
accelerometer

60
healthy
adults

- - 69%

Uçar et al. [140]
k-nearest
neighbors
classifier

PPG
10

adults
with OSA

73% - -

Dehkori et al. [141]
Multivariate

logistic
regression

PPG
160

healthy
children

77% - -

Motin et al. [142]
Support
vector

machine

PPG

5 patients
with sleep-
disordered
breathing

72% - -

The 2-stage accuracy denotes the classification accuracy when differentiating between wakefulness and
sleep. Similarly, 3-stage denotes wakefulness/NREM/REM and 4-stage denotes wakefulness/light sleep/deep
sleep/REM.
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4 Aims of the thesis

Diagnosis of sleep disorders relies on overnight polysomnographies with the
inherent time-consuming manual analysis. For example, sleep stages are manually
identified based on EEG, EOG, and EMG signals which all require meticulous
placement of multiple electrodes and subsequently the manual analysis can take
up to hours for even an experienced scorer. Moreover, sleep stages are identified
in non-overlapping 30-second epochs which are a historical remnant from an era
when the recordings were printed on paper for analysis. Thus, many transitions
between sleep stages may be overlooked [13,146]. Furthermore, the manual analysis
often relies on arbitrary rules. For example, OSA severity is classified based on AHI
thresholds which lack a solid scientific foundation [55].

To resolve these issues, four specific aims were undertaken:

1. Optimize the AHI thresholds used for severity classification of OSA in
polygraphic studies to better correspond to the risk of all-cause mortality.

2. Implement deep learning methods for EEG-based automatic sleep staging with
a minimal number of recorded signals and study how OSA severity affects the
accuracy of the automatic sleep staging.

3. Accurately determine the sleep stages without EEG using only a PPG signal
recorded with a finger pulse oximeter.

4. Use deep learning methods to assess the sleep architecture in more detail
beyond the traditional sleep staging approach and study how the sleep
architecture varies between different OSA severity categories.
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5 Methods

The studies included in this thesis utilized clinical datasets collected from
individuals with a clinical suspicion of OSA. In study I, survival analysis was
utilized to evaluate the optimal AHI thresholds for classification of OSA severity. In
study II, deep learning methods were utilized to develop an approach for automatic
sleep staging based on EEG and EOG recordings. In study III, a deep learning
model was developed for identifying sleep stages from a PPG signal recorded with
a finger pulse oximeter. In study IV, the deep learning-based sleep staging approach
developed in study II was applied to analyse the sleep architecture with a better
temporal resolution to enable a more detailed assessment of sleep fragmentation.

5.1 STUDY POPULATIONS AND MEASUREMENT DEVICES

Study I utilized a follow-up dataset of 1989 suspected OSA patients (Table 5.1)
who had undergone polygraphic recordings in Kuopio University Hospital, Kuopio,
Finland during 1993–2003 due to a clinical suspicion of OSA. The recordings
were conducted using a custom-made ambulatory device recording four channels:
airflow with an oronasal thermistor, arterial oxygen saturation with a pulse oximeter
(Minolta Pulsox 7), sleeping position with tilt switches, and abdominal respiratory
movements with a piezoelectric sensor [147] . All the signals were sampled with
a 4 Hz sampling frequency. All the recordings were manually reanalysed during
2012–2015 [148] in compliance with the prevailing AASM criteria. Hypopneas
were scored using a desaturation threshold of 4% (2007 AASM rule 4A) [11].
The background information of patients was collected from their medical records
including BMI, smoking status, gender, age, CPAP treatment, and co-morbidities.
Information on smoking and BMI was missing from a total of 206 patients who
were excluded from the study population, leading to a total of 1783 patients being
included. The causes of death were obtained from Statistics Finland (Helsinki,
Finland) in February 2018. The mean (standard deviation) follow-up time was 18.3
(5.2) years. A favourable statement for retrospective data collection and analysis was
obtained from The Research Ethics Committee of the Hospital District of Northern
Savo, Kuopio, Finland (decision numbers 127/2004 and 24/2013).

Studies II–IV were based on a dataset of clinical PSGs of 933 patients with a
clinical suspicion of OSA (Table 5.2). The recordings were conducted in the Princess
Alexandra Hospital, Brisbane, Australia during 2015–2017 with the Compumedics
Grael acquisition system (Compumedics, Abbotsford, Australia). Each recording
was manually scored in compliance with the prevalent AASM guidelines [11] by
one of ten experienced scorers participating regularly in intra- and inter-laboratory
scoring concordance activities. The retrospective data collection was approved by
the Institutional Human Research Ethics Committee of the Princess Alexandra
Hospital (HREC/16/QPAH/021 and LNR/ 2019/QMS/54313). Studies II and IV
utilized the EEG and EOG recordings sampled at 1024 Hz, the sleep stage scorings,
and the identified respiratory events for determining the OSA severity. A total of
891 individuals had successful recordings of the required signals together with
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Table 5.1: Demographic information of the patients in
the follow-up dataset collected at the Kuopio University
Hospital (n = 1783) and utilized in study I.

n (% of the population)

Female 422 (24%)
Male 1361 (76%)

Non-smoker 766 (43%)
Quit smoking 480 (27%)

Smoker 537 (30%)
CPAP treatment 366 (21%)

Acute myocardial infarction 102 (6%)
Cardiovascular disease 231 (13%)

Diabetes 363 (20%)

Median (Q1 – Q3)

Apnea-hypopnea index (h−1) 5.7 (1.7 – 16.4)
Body mass index (kgm−2) 28.4 (25.5 – 32.7)

Age (years) 48.2 (41.3 – 55.1)

CPAP = continuous positive airway pressure, Q1 = 25th percentile, and
Q3 = 75th percentile.

completed scorings and were included in these studies. Instead of EEG and EOG
recordings, study III was based on PPG signals ( fs = 256 Hz), scored sleep stages,
and scored respiratory events leading to a total study population of 894 individuals.

In study II, a publicly available dataset, Physionet Sleep-EDF [143, 144], was
additionally used in addition to the clinical dataset presented above to enable
comparison with previous studies. Version 2 of the expanded Sleep-EDF dataset
released in March 2018 and comprising 153 PSGs was used. The dataset comprised
37 men and 41 women previously investigated to study the effect of age on sleep
in a healthy population and most individuals had undergone two PSGs. From the
recordings, the Fpz-Cz EEG signal and a horizontal EOG signal were used along
with the manual sleep staging. The sleep staging was originally conducted according
to the Rechtschaffen and Kales manual [12]. Each epoch was scored either into
wake, one of four stages of NREM sleep, REM sleep, movement, or alternatively
the epoch remained unscored if the scoring was technically impossible. The NREM
stages comprising deep sleep (S3 and S4 [12]) were combined into a single N3
sleep stage to correspond to the current AASM guidelines [11] and the epochs
that were not scored or were scored as movement were left out due to their small
number. Furthermore, the original recordings included long periods of wakefulness
before and after sleep. Thus, the recordings were truncated to contain only up to 30
minutes of wakefulness before and after sleep to obtain more reliable results and
to enable reliable comparison to previous studies. The percentage of sleep stages in
the Sleep-EDF dataset and the clinical PSG dataset is presented in Table 5.3.
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Table 5.2: Demographic information of the suspected obstructive sleep apnea
patients (OSA) patients who underwent clinical polysomnographies at the
Princess Alexandra Hospital. This dataset was utilized in studies II and IV
(n = 891) and in study III (n = 894).

Studies II and IV Study III
n (% of the population)

Non-OSA (AHI < 5) 152 (17%) 154 (17%)
Mild OSA (5 ≤ AHI < 15) 278 (31%) 278 (31%)

Moderate OSA (15 ≤ AHI < 30) 208 (23%) 209 (23%)
Severe OSA (AHI ≥ 30) 253 (28%) 253 (28%)

Female 398 (45%) 398 (45%)
Male 493 (55%) 496 (55%)

Median (Q1 – Q3)

Age (years) 55.8 (44.7 – 65.8) 55.9 (44.7 – 65.8)
Arousal index (h−1) 20.8 (14.0 – 31.4) 20.7 (13.9 – 31.4)

Apnea-hypopnea index (h−1) 15.8 (7.0 – 32.8) 15.8 (7.0 – 32.6)
Body mass index (kgm−2) 34.5 (29.4 – 40.4) 34.4 (29.4 – 40.4)

Sleep efficiency (%) 70.7 (57.9 – 82.0) 70.7 (58.1 – 81.9)
Sleep latency (min) 17.5 (9.0 - 34.5) 17.5 (9.0 - 34.5)

Total recording time (min) 442.5 (409.5 – 474.5) 442.3 (409.5 – 474.0)
Total sleep time (min) 308.8 (253.8 – 359.8) 308.8 (253.5 – 359.5)

Wake after sleep onset (min) 102.8 (61.3 – 150.0) 102.5 (61.0 – 149.5)

AHI = apnea-hypopnea index, Q1 = 25th percentile, and Q3 = 75th percentile. Sleep efficiency is
the percentage of sleep from the total recorded time, sleep latency is the time spent awake before
falling asleep, and wake after sleep onset is the duration of wakefulness during the night after
falling asleep.
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Table 5.3: The percentage of sleep stages in the Sleep-EDF
dataset [143, 144] and the clinical dataset including the
percentages for each obstructive sleep apnea (OSA) severity.

Wake N1 N2 N3 REM

Studies II and IV
Sleep-EDF (n = 153) 34% 11% 35% 7% 13%

Clinical dataset (n = 891) 32% 9% 33% 13% 12%
Non-OSA (n = 152) 28% 6% 35% 17% 14%
Mild OSA (n = 278) 29% 7% 36% 15% 13%

Moderate OSA (n = 208) 32% 32% 33% 14% 12%
Severe OSA (n = 253) 39% 15% 28% 9% 9%

Study III
Clinical dataset (n = 894) 32% 9% 33% 13% 12%

5.2 OPTIMIZING THE AHI THRESHOLDS USED FOR OSA SEVERITY
CLASSIFICATION

In study I, the AHI thresholds used for OSA severity classification were optimized
for polygraphic recordings with regards to the risk of all-cause mortality. The
optimization was based on survival analysis and various threshold combinations
were simulated when classifying the patients into four groups: non-OSA, mild OSA,
moderate OSA, and severe OSA. The minimum threshold value for mild OSA was 1
h−1 and the maximum for severe OSA was 80 h−1. All the threshold combinations
with a minimum separation of 1 h−1 between the thresholds was simulated leading
to a total of 79079 combinations.

Corresponding to each combination of threshold values, the risk of all-cause
mortality for each OSA severity category was investigated using the Cox
proportional hazards model [149, 150]. In the model, mortality was used as the
studied event and the follow-up time was used as the time to the event. Censoring
was applied to all the individuals still alive after the follow-up time (i.e. when the
mortality information was obtained). Furthermore, the model was adjusted for age,
BMI, cardiovascular disease, CPAP treatment, diabetes, gender, smoking, and the
occurrence of acute myocardial infarction.

To control for overfitting when optimizing the thresholds to the study
population, separate optimization and validation groups were used with controlled
random sampling. Instead of randomizing the whole population, the randomization
was done in two steps to include patients with all the adjusting variables in each
group during each randomization. The randomized sampling was conducted as
follows:
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1. From the complete population, women, patients with a pre-existing diagnosis
of diabetes or cardiovascular diseases, patients treated with CPAP, and patients
who suffered an acute myocardial infarction were all grouped into a single
group and this group was then randomized to equally sized optimization and
validation groups.

2. The remaining population was randomized to the optimization and validation
groups until both groups were evenly sized.

After the split into optimization and validation groups, the Cox proportional
hazards model was used to evaluate the risk of all-cause mortality with the different
threshold combinations. This complete protocol was repeated 100 times, leading to
a total of 7 907 900 formations of the proportional hazards model.

After simulating every threshold combination and after all the randomizations,
the optimization criteria presented in Table 5.4 were applied to choose the optimal
threshold combination.

Corresponding to each randomization, every threshold combination that fulfilled
all of the optimization criteria 1-3 was selected. Out of all the randomizations,
the threshold combination fulfilling all the criteria most often in the optimization
set was chosen as the optimal threshold combination. This combination was then
studied across all the validation sets and the median values of all the obtained
hazard ratios were calculated.

Table 5.4: The criteria used for threshold optimization.

1.

The hazard ratios for all-cause mortality must increase
nearly linearly when progressing towards more severe
OSA to ensure that the more severe disease reflects
a higher mortality risk. This criterion was applied by
demanding that the differences in hazard ratios between
mild and moderate and between moderate and severe
OSA are within a margin of ±0.02.

2. All the severity categories must include a minimum of
15% of the population.

3.

The number of patients in each severity category
decreases with increasing OSA severity. That is, for
group sizes it must hold that n(non-OSA) > n(mild OSA)
> n(moderate OSA) > n(severe OSA).
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5.3 DEEP LEARNING-BASED SLEEP STAGING

Studies II and III focused on developing deep learning approaches for automatic
sleep staging. In study II, the EEG channel (derivation F4-M1) was used either alone
for single-channel sleep staging or together with an EOG channel (derivation E1-M2)
for a multi-channel approach. In contrast, study III utilized a PPG signal recorded
with a transmissive finger pulse oximeter. Both studies were based on a combined
convolutional (CNN) and recurrent neural networks (RNN). In both studies, the
input signals were downsampled to 64 Hz to reduce the computational load. No
additional preprocessing was required. The CNN architecture was chosen to learn
the characteristic features of each sleep stage from the signals while the RNN was
chosen to account for the temporal nature of sleep stages during the night. The
implementation of the deep learning models was conducted in Python 3.6 using
the Keras application programming interface (API) 2.2.4 with TensorFlow (v. 1.13)
backend.

5.3.1 Neural network architecture

The CNN architectures in studies II and III were identical and comprised a total of
six 1D convolutional layers, two max-pooling layers, and a global average pooling
layer (Figure 5.1). Each convolution was followed by batch normalization and a
rectified linear unit (ReLU) activation. The number of convolutional filters equalled
the sampling frequency of the input signal for the first two convolutions, two times
the sampling frequency for the next two convolutions, and four times the sampling
frequency for the last two convolutions. The kernel size was 21 for the first two
convolutions and 5 for the rest. The stride size was 5 for the first 1D convolution and
1 for the rest. The max-pooling layers were situated after the first two convolutions
and after the next two and had a pool size of 2 with a stride size of 2. The global
average pooling was the final layer of the CNN architecture.

The complete network architecture in studies II and III included a time
distributed layer of the CNN, followed by a Gaussian dropout layer with rate of
0.3. In study II, these were then followed by a bidirectional LSTM layer with the
number of units equalling four times the sampling frequency. In the forward step, a
dropout rate of 0.3 and a tanh activation were used. In the recurrent step, a dropout
rate of 0.5 and a hard sigmoid activation were used. In contrast, study III utilized
a bidirectional gated recurrent unit (GRU) layer with the number of cells equalling
four times the sampling frequency. The GRU was chosen due to its computational
efficiency and a comparable performance to the LSTM [151, 152]. A dropout of 0.3
was used in the forward step and 0.5 in the recurrent step. In both studies, the final
layer of the model was a time distributed dense layer with softmax activation. This
layer produced an output sequence of the sleep stage probabilities.
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Figure 5.1: The architectures of the combined convolutional neural network (CNN)
and recurrent neural network used in studies II and III. fs denotes the sampling
frequency of the input signal. The parameters are given for the 1D convolutions
(Conv1D) as (number of filters, kernel size, stride size) and for the max-pooling
as (pool size, stride size). The dropout rate is given for all the dropout layers and
the number of units is given for the long short-term memory (LSTM) layer, gated
recurrent unit (GRU) layer, and for the dense layer (Softmax). In study II, the input
was a sequence of hundred 30-second epochs of either a single EEG channel or an
EEG channel combined with an EOG channel. In study III, sequences of PPG signal
were used as the input. The final output of the models was a sequence of softmax
values representing the probability of each sleep stage for each epoch. n denotes the
number of sleep stages used in the classification. This figure is reconstructed from
studies II and III.
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5.3.2 The training process and performance evaluation

In studies II and III, the model was trained using sequences of hundred 30-second
epochs. During the training process, the size of the training data was multiplied
fourfold by using an overlap of 75% when forming the sequences. However, the
overlap was not used for validation or test sets. The training was conducted using
a categorical cross-entropy loss function. Furthermore, an Adam optimizer with
warm restarts [153] was used. The learning rate was optimized with a learning rate
finder [154], and a range of 0.001 to 0.00001 was used in both studies.

EEG-based sleep staging

In study II, sleep staging was conducted in two different populations, in a public
dataset (Sleep-EDF [143, 144]) of healthy individuals and in a clinical dataset from
Princess Alexandra Hospital. In the clinical dataset, the model was trained using
the whole dataset and separately in each OSA severity category. The sleep staging
was conducted either using a single EEG channel (F4-M1) or with a two-channel
approach using an EEG (F4-M1) and EOG (E1-M2) channels.

In the Sleep-EDF dataset, ten-fold cross-validation was used to assess the
performance of the model. During each fold in the cross-validation, 90% of the
population was used for training and 10% as an independent test set. Furthermore,
to avoid overfitting during training and to choose the optimal model, 10% of the
training set was further chosen as the validation set during each fold. Ten-fold
cross-validation was chosen due to the relatively small size of the dataset and to
enable a comparison with the literature.

With the clinical dataset, the performance of the model was evaluated using
the whole study population, with additional performance evaluation in each OSA
severity category. When the complete study population was used, the dataset was
split into three individual sets: a training set of 717 recordings (80%), a validation
set of 87 recordings (10%), and an individual test set of 87 recordings (10%). To
study the performance of the model in each OSA severity category, the dataset was
split into the four groups (non-OSA, mild OSA, moderate OSA, and severe OSA)
and the performance was evaluated in each group with ten-fold cross-validation
using a similar procedure as with the Sleep-EDF dataset.

The accuracy of the sleep staging was calculated in an epoch-by-epoch manner.
Furthermore, the correspondence of the deep learning-based sleep staging to
manual staging was evaluated using Cohen’s kappa coefficient (κ) [155]. The
accuracy of each sleep stage was further evaluated by assessing the confusion
matrix. When using ten-fold cross-validation, all the performance metrics were
calculated over all the folds.

PPG-based sleep staging

In study III, the dataset comprising 894 individuals was split into a training
set of 715 recordings (80%), a validation set of 89 recordings (10%), and an
independent test set of 90 recordings (10%). The training process was conducted
individually using three different sleep classification systems: 3-stage classification
(wake/NREM/REM), 4-stage classification (wake/light sleep/deep sleep/REM),
and 5-stage classification (wake/N1/N2/N3/REM).
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The accuracy and κ were calculated and the confusion matrices formed in
an epoch-by-epoch manner for each classification system. To further assess the
usability of the PPG-based sleep staging, total sleep time and sleep efficiency were
calculated. Furthermore, the values of the AHI were calculated corresponding to
the manual sleep staging and when using the PPG-based approach. For further
comparison, AHI calculation from polygraphic recordings was simulated by
dividing the number of all the scored respiratory events by the total recording time.
This index is occasionally also called the respiratory event index (REI) and is a
common metric with polygraphic recordings [11].

5.4 DEEP LEARNING-BASED SLEEP STAGING WITH BETTER
TEMPORAL RESOLUTION

In study IV, the deep learning model developed in study II was implemented
to evaluate the sleep staging in more detail over the traditional approach with
non-overlapping 30-second epochs. The model trained on the clinical population
using the combination of EEG (F4-M1) and EOG (E1-M2) channels was used.
Traditionally, the sleep stages are scored in non-overlapping 30-second epochs
starting from the onset of the sleep study (Figure 5.2). In study IV, the deep
learning model was used to score the sleep stages with the traditional approach and
by allowing an overlap between consecutive 30-second epochs (Figure 5.2). Three
different epoch-to-epoch durations were studied: starting a new 30-second epoch
every 15 seconds (50% overlap), every 5 seconds (83.3% overlap), or every 1 second
(96.7% overlap).

After scoring the complete study population with the four different approaches
(traditional, 1-, 5-, and 15-second epoch-to-epoch duration), the individuals
were grouped based on OSA severity categories. With each scoring, the sleep
characteristics of the OSA severity groups were compared by calculating the sleep
stage percentages, sleep parameters (i.e. total sleep time, TST; sleep efficiency, SE;
and wake after sleep onset, WASO), and by studying the sleep fragmentation via
survival analysis.

In the survival analysis, the event studied was awakening from sleep and the
time to event was the mean duration of the sleep periods (i.e. onset of sleep until
the next epoch scored as wake) for each individual. Thus, no censoring was needed
for the individuals. When comparing the OSA severity groups, Cox proportional
hazards model and Kaplan-Meier survival curves were used. The survival curves
provided a graphical representation of the differences between groups and the Cox
proportional hazards model provided the hazard ratios for each group illustrating
the risk of fragmented sleep (i.e. short continuous sleep periods during the night).
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Figure 5.2: Sleep staging process with the deep learning model in study IV. The
figure illustrates traditional sleep staging with 30-second epochs (top) and the more
detailed approach by allowing the 30-second epochs to overlap (bottom). With the
overlapping epochs, a sleep stage is identified for each epoch (Xi) which are then
ordered based on the starting point of the epoch. Xi illustrates the identified sleep
stage in epoch i, where X ∈ {wake, N1, N2, N3, REM}. In this figure, only the
15-second epoch-to-epoch duration is shown for clarity. Figure reconstructed from
study IV.
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5.5 STATISTICAL ANALYSES

In study I, the Cox proportional hazards model was used to evaluate the connection
between OSA severity categories and all-cause mortality. In studies II and III,
the inter-rater agreement between manual and deep learning-based sleep staging
was assessed with Cohen’s kappa (κ) coefficient [155]. Furthermore, in study III
the statistical significance of the differences between sleep parameters (i.e. TST,
SE, percentages of sleep stages, and AHI) derived from manual and automatic
scoring was evaluated using the Wilcoxon signed-rank test. In study IV, the
sleep continuity was determined based on the Cox proportional hazards model
and Kaplan-Meier survival curves. Furthermore, the statistical significance of the
differences in sleep parameters (i.e. TST, SE, WASO) between different scoring
approaches was evaluated with the Wilcoxon signed-rank test and between the
OSA severity categories with the Mann-Whitney U test. All statistical analyses were
conducted with Matlab 2018b using the Statistics and Machine Learning Toolbox
(The MathWorks, Natick, MA, USA) or in Python 3.6 using the scikit-learn library
[156].
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6 Results

The main result of study I was that the current AHI thresholds of 5-15-30 h−1 used
in the severity classification of OSA are not optimal and the combination of 3-9-24
h−1 would better reflect the OSA-related risk of all-cause mortality. The main result
of study II was the demonstration that a deep learning-based sleep staging could
be achieved from a single frontal EEG channel with comparable accuracy to that
of manual scoring. Study III showed that sleep staging can be conducted from a
PPG signal measured with a simple finger pulse oximeter. In study IV, the use of
overlapping 30-second epochs in the deep learning-based sleep staging enabled a
more accurate representation of sleep architecture with better temporal resolution
and revealed the highly fragmented sleep in patients with severe OSA better than
possible with traditional non-overlapping 30-second epochs. The following sections
describe the results of each study in more detail.

6.1 MORTALITY RISK-BASED AHI THRESHOLDS FOR OSA
SEVERITY CLASSIFICATION

In study I, the AHI thresholds used for severity classification of OSA were optimized
for ambulatory polygraphy with regards to the risk of all-cause mortality. The
hazard ratios for the all-cause mortality risk varied greatly across all the simulated
threshold combinations. The threshold dividing the non-OSA from mild OSA had
the most observable effect on the magnitude of the hazard ratios (Figure 6.1). When
this threshold was lowered from the current value of 5 h−1, the hazard ratios for all
the OSA severity categories increased. The thresholds between mild and moderate
and between moderate and severe OSA exerted a smaller effect on the overall
magnitude of the hazard ratios.

The threshold combination of 3-9-24 h−1 fulfilled all of the optimization criteria
(Table 5.4) most often (37 times) in the randomized optimization sets whereas
the combinations 3-9-23 h−1, 3-9-25 h−1, and 3-9-26 h−1 fulfilled the optimization
criteria 34 times. An example of the threshold combinations fulfilling the
optimization criteria during a single optimization group out of 100 randomizations
is shown in Figure 6.2. With the optimized thresholds (3-9-24 h−1), 630 patients were
classified into the non-OSA category, 459 as mild, 377 as moderate, and 317 into the
severe OSA category. In contrast, with the traditional thresholds (5-15-30 h−1) 838
were classified into the non-OSA category, 469 as mild, 232 as moderate, and 244
into the severe OSA category.

Compared to the traditional thresholds, the optimized thresholds (3-9-24 h−1)
increased the hazard ratios in all of the OSA severity categories in the optimization
datasets (Table 6.1) and the validation sets (Table 6.2). The median of the hazard
ratios across the randomizations were 1.11 (p = 0.50), 1.61 (p = 0.05) and 1.64
(p = 0.06) for mild, moderate, and severe OSA, respectively, with the threshold
combination of 5-15-30 h−1 and increased to 1.41 (p = 0.15), 1.66 (p = 0.05) and
1.82 (p = 0.03), respectively, with the threshold combination of 3-9-24 h−1.
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Figure 6.1: Illustration of the threshold simulations. The hazard ratios for
all-cause mortality and the number of patients in each obstructive sleep
apnea (OSA) severity category are shown corresponding to each threshold
combination. Only a single optimization group out of 100 randomizations
and a limited number of combinations (700 out of 79079) are illustrated for
clarity. The vertical dashed line represents the optimized thresholds (3-9-24
h−1) and the dotted line the traditional thresholds (5-15-30 h−1). The shaded
area represents the optimal area with the highest hazard ratios when the
lowest threshold is between 3 and 5 h−1. Figure reconstructed based on
study I.
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Table 6.1: The median hazard ratios and corresponding p-values calculated from all
the 100 randomized optimization sets with the optimized and traditional severity
classification thresholds.

3-9-24 h−1 5-15-30 h−1

Hazard ratio p-value Hazard ratio p-value
Median IQR Median IQR Median IQR Median IQR

Mild OSA 1.43 0.31 0.14 0.25 1.13 0.22 0.56 0.45
Moderate OSA 1.64 0.39 0.04 0.09 1.64 0.38 0.03 0.10

Severe OSA 1.76 0.51 0.03 0.09 1.72 0.40 0.03 0.10
Age (risk/year) 1.08 0.01 <0.01 <0.01 1.08 0.01 <0.01 <0.01

AMI 1.55 0.36 0.05 0.14 1.56 0.38 0.05 0.14
BMI (risk/kgm−2) 1.03 0.01 0.06 0.06 1.03 0.01 0.02 0.08

CPAP 0.75 0.13 0.12 0.23 0.71 0.14 0.07 0.17
CVD 1.49 0.23 0.03 0.07 1.48 0.24 0.03 0.08

Diabetes 1.21 0.17 0.28 0.38 1.20 0.17 0.27 0.32
Male 1.44 0.33 0.08 0.20 1.49 0.32 0.07 0.16

Smoker 2.29 0.42 <0.01 <0.01 2.27 0.40 <0.01 <0.01
Former smoker 1.10 0.20 0.57 0.47 1.09 0.22 0.58 0.44

The hazard ratios for each obstructive sleep apnea (OSA) severity category were calculated using the Cox
proportional hazards model adjusted for age, occurrence of acute myocardial infarction (AMI), body mass index
(BMI), continuous positive airway pressure (CPAP) treatment, cardiovascular disease (CVD), diabetes, gender,
and smoking status. IQR is the interquartile range calculated as the difference between 75th and 25th percentiles.
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Table 6.2: The median hazard ratios and corresponding p-values calculated from all the
100 randomized validation sets with the optimized and traditional severity classification
thresholds.

3-9-24 h−1 5-15-30 h−1

Hazard ratio p-value Hazard ratio p-value
Median IQR Median IQR Median IQR Median IQR

Mild OSA 1.41 0.34 0.15 0.24 1.11 0.18 0.50 0.43
Moderate OSA 1.66 0.38 0.05 0.11 1.61 0.40 0.05 0.14

Severe OSA 1.82 0.51 0.03 0.13 1.64 0.41 0.06 0.14
Age (risk/year) 1.08 0.01 <0.01 <0.01 1.08 0.01 <0.01 <0.01

AMI 1.53 0.44 0.05 0.14 1.56 0.46 0.09 0.30
BMI (risk/kgm−2) 1.03 0.01 0.02 0.06 1.03 0.01 0.02 0.06

CPAP 0.78 0.16 0.21 0.39 0.73 0.16 0.14 0.32
CVD 1.49 0.32 0.04 0.12 1.49 0.30 0.05 0.14

Diabetes 1.19 0.20 0.34 0.43 1.22 0.20 0.28 0.41
Male 1.39 0.34 0.14 0.25 1.39 0.39 0.12 0.25

Smoker 2.34 0.52 <0.01 <0.01 2.33 0.51 <0.01 <0.01
Former smoker 1.10 0.20 0.53 0.45 1.10 0.22 0.53 0.47

The hazard ratios for each obstructive sleep apnea (OSA) severity category were calculated using the Cox
proportional hazards model adjusted for age, occurrence of acute myocardial infarction (AMI), body mass index
(BMI), continuous positive airway pressure (CPAP) treatment, cardiovascular disease (CVD), diabetes, gender,
and smoking status. IQR is the interquartile range calculated as the difference between 75th and 25th percentiles.
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6.2 DEEP LEARNING-BASED AUTOMATIC SLEEP STAGING BASED
ON EEG AND EOG RECORDINGS

In study II, deep learning methods for automatic sleep staging based on
single-channel (EEG) and two-channel (EEG + EOG) recordings were developed.
The performance of the methods was evaluated on a public dataset of healthy
individuals and in a clinical dataset of patients in whom there was a suspicion
of OSA. Furthermore, the effect of OSA severity on the sleep staging accuracy was
assessed.

6.2.1 Sleep staging in a public dataset of healthy individuals

In the updated Sleep-EDF dataset, the model achieved an epoch-by-epoch accuracy
of 89.8% (κ = 0.86) in the training set, 83.0% (κ = 0.77) in the validation set, and
83.9% (κ = 0.78) in the test set with the two-channel input during the ten-fold
cross-validation. With respect to the individual sleep stages, the accuracies were
93.7% for wake, 45.1% for N1, 87.3% for N2, 78.0% for N3, and 85.4% for REM in
the test sets (Figure 6.3 A).

With the single-channel approach, the accuracies were 89.2% (κ = 0.85), 82.8% (κ
= 0.77), and 83.7% (κ = 0.77) in the training, validation, and test sets, respectively.
In the test sets, the individual sleep stage accuracies were 93.4% for wake, 43.4% for
N1, 87.3% for N2, 78.7% for N3, and 85.4% for REM (Figure 6.3 B). In the updated
Sleep-EDF dataset, the accuracies obtained surpassed previously published results
(Table 6.3).

6.2.2 Sleep staging in a clinical dataset of patients with suspected OSA

In the clinical dataset of suspected OSA patients, the two-channel epoch-by-epoch
accuracy was 85.5% (κ = 0.80) in the training set, 83.8% (κ = 0.78) in the validation
set, and 83.8% (κ = 0.78) in the independent test set. With respect to the individual
sleep stages, the accuracies were 89.4% for wake, 46.9% for N1, 87.2% for N2, 79.8%
for N3, and 91.4% for REM in the test set (Figure 6.3 C).

The accuracy of the single-channel approach was 86.3% (κ = 0.82), 83.4% (κ =
0.78), and 82.9% (κ = 0.77) in the training, validation, and test sets, respectively. In
the test set, the accuracies were 89.8% for wake, 46.0% for N1, 86.5% for N2, 75.4%
for N3, and 90.8% for REM (Figure 6.3 D).
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Figure 6.3: Normalized confusion matrices of the deep learning-based sleep staging
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the clinical dataset. Figure reconstructed based on study II.
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Table 6.3: Comparison of the results obtained in study II
with previous studies utilizing the Sleep-EDF dataset using
cross-validation with an independent test set and having excluded
the excess wake periods from the beginning and end of the
recordings.

Accuracy κ Recordings
Cross-

validation

Single-channel: Fpz-Cz
Study II 83.7% 0.77 153 10-fold

Phan et al. [132] 82.6% 0.76 153 10-fold
Mousavi et al. [121] 80.0% 0.73 153 10-fold
Mousavi et al. [121] 84.3% 0.79 39 20-fold
Supratak et al. [122] 82.0% 0.76 39 20-fold

Phan et al. [123] 81.9% 0.74 39 20-fold
Tsinalis et al. [124] 78.9% - 39 20-fold
Tsinalis et al. [125] 74.8% - 39 20-fold

Two-channel: Fpz-Cz and EOG
Study II 83.9% 0.78 153 10-fold

Phan et al. [123] 82.3% 0.75 39 20-fold
Andreotti et al. [127] 76.8% 0.68 38 20-fold

6.2.3 Effect of OSA severity on sleep staging

When investigating the effect of OSA severity on the sleep staging performance via
ten-fold cross-validation within each OSA severity category, the results revealed that
the accuracy decreased with increasing OSA severity (Table 6.4). The accuracy and
kappa values were highest for those individuals without OSA and lowest in severe
OSA patients. Similarly, individual sleep stage accuracies were generally lowest in
patients with severe OSA; however, the N1 accuracy in severe OSA patients was the
highest of all the severity categories (Figure 6.4).
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Table 6.4: The performance of the automatic sleep staging in patients
without obstructive sleep apnea (OSA) (n = 152), with mild OSA (n = 278),
with moderate OSA (n = 208), and with severe OSA (n = 254).

Accuracy Cohen’s kappa (κ)

Training Validation Test Training Validation Test

Non-OSA 89.4% 84.4% 84.5% 0.86 0.79 0.79
Mild OSA 87.7% 82.4% 82.8% 0.83 0.77 0.77

Moderate OSA 87.2% 83.0% 82.2% 0.83 0.77 0.76
Severe OSA 82.9% 76.7% 76.5% 0.77 0.68 0.68
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Figure 6.4: Normalized confusion matrices of the automatic sleep staging with a
single EEG channel (F4-M1) in (A) non-OSA, (B) mild OSA, (C) moderate OSA, and
(D) severe OSA patients. Figure reconstructed based on study II.
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6.3 DEEP LEARNING-BASED AUTOMATIC SLEEP STAGING BASED
ON PHOTOPLETHYSMOGRAM

In study III, sleep staging was conducted based solely on a photoplethysmogram
(PPG) signal recorded with a finger pulse oximeter using three different
classification systems: 3-stage classification (wake/NREM/REM), 4-stage
classification (wake/light sleep/deep sleep/REM), and 5-stage classification
(wake/N1/N2/N3/REM). Furthermore, total sleep time and sleep efficiency
derived from the PPG-based sleep staging were compared to the manual scoring.
Additionally, the AHI was calculated based on PPG sleep staging (PPG-AHI) by
using the derived total sleep time and discarding respiratory events occurring
during the epochs identified as wakefulness. This was then compared with
the manual polysomnography-based AHI (PSG-AHI) and the corresponding to
polygraphy-based AHI (PG-AHI) without information about the sleep stages.

6.3.1 Sleep staging accuracy

In the 3-stage classification (wake/NREM/REM), the PPG-based sleep staging
achieved an epoch-by-epoch accuracy of 89.0% (κ = 0.81) in the training set, 79.5%
(κ = 0.63) in the validation set, and 80.1% (κ = 0.65) in the independent test set.
In the test set, wake was identified with 72.0% accuracy, NREM sleep with 87.1%
accuracy, and REM sleep with 69.5% accuracy (Figure 6.5 A).

The 4-stage classification (wake/light sleep/deep sleep/REM) yielded an
accuracy of 83.1% (κ = 0.75) in the training set, 67.1% (κ = 0.51) in the validation
set, and 68.5% (κ = 0.54) in the independent test set. The model classified wake,
light sleep, deep sleep, and REM sleep with accuracies of 72.8%, 71.5%, 52.0%, and
66.9%, respectively (Figure 6.5 B).

In the 5-stage classification (wake/N1/N2/N3/REM), the accuracies
were 77.5% (κ = 0.69) in the training set, 62.3% (κ = 0.48) in
the validation set, and 64.1% (κ = 0.54) in the test set. For the
individual sleep stages, the accuracies were 77.6% for wake, 12.5% for N1, 67.3%
for N2, 53.7% for N3, and 68.8% for REM sleep (Figure 6.5 C). Figure 6.6 illustrates
an example of the 30-second PPG signal epochs during correctly classified sleep
stages.
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Figure 6.5: Normalized confusion matrix of the PPG-based sleep staging in (A)
3-stage classification (wake/NREM/REM), (B) 4-stage classification (wake/light
sleep/deep sleep/REM), and (C) 5-stage classification (wake/N1/N2/N3/REM).
Figure reconstructed based on study III.
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Figure 6.6: Examples of the PPG signals during correctly identified sleep stages.
Stable PPG signal with a relatively constant frequency and amplitude can be
observed during wakefulness. In contrast, the frequency decreases and an irregular
variation in the signal amplitude becomes visible during N1 sleep. The amplitude
further decreases and low-frequency oscillations in the signal begin to be evident
when proceeding to N2 and N3 sleep. When comparing to wake, REM sleep is rather
similar but with slightly higher variation in the amplitude. Figure reconstructed
based on study III.
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6.3.2 Derived clinical parameters

The smallest difference in derived total sleep time (TST) and sleep efficiency (SE)
between manual sleep staging and PPG-based sleep staging was obtained with the
5-stage classification (Table 6.5). The Bland-Altman plots for the TST and SE are
presented in Figure 6.7. Furthermore, the PG-AHI exhibited the largest difference
when compared to the diagnostic PSG-AHI (Table 6.6), whereas the PPG-AHI
was considerably closer to the diagnostic AHI, with the smallest difference being
obtained with the 3-stage classification.

Table 6.5: The total sleep time and sleep efficiency derived from the manual sleep
staging and the PPG-based sleep staging with 3-, 4-, and 5-stage classification. The
mean (standard deviation) of the parameters and the mean difference to the manual
sleep staging is presented.

Total sleep time (min) Sleep efficiency (%)
Mean Mean difference p Mean Mean difference p

Manual 298.4 (79.8) - - 68.4 (16.9) - -
PPG: 3-stage 310.6 (76.1) 12.2 (52.9) 0.03 71.2 (15.7) 2.8 (11.3) 0.03
PPG: 4-stage 307.2 (78.7) 8.8 (55.5) 0.06 70.4 (16.5) 2.0 (12.0) 0.06
PPG: 5-stage 290.9 (81.9) -7.5 (55.2) 0.24 66.6 (17.2) -1.9 (12.2) 0.23

Table 6.6: The apnea-hypopnea index (AHI) derived
from the manual scoring of polysomnography, the AHI
simulated to present polygraphy, and AHI derived
from the PPG-based sleep staging with 3-,4-, and
5-stage classifications. The mean (standard deviation)
of the AHI values and the mean difference to the
polysomnography-based AHI are presented.

Apnea-hypopnea index (h−1)
Mean Mean difference p

Polysomnography 24.2 (24.3) - -
Polygraphy 18.8 (17.5) -5.3 (12.4) <0.001
PPG: 3-stage 23.3 (22.5) -0.9 (9.0) 0.005
PPG: 4-stage 23.1 (22.1) -1.1 (8.5) 0.002
PPG: 5-stage 22.6 (22.0) -1.6 (8.5) 0.001

The AHI from PPG was calculated based on the total sleep time derived
from the automatic sleep staging and by discarding respiratory events
occurring during wake epochs. The polygraphy AHI was calculated by
including all the respiratory events regardless of the prevalent sleep
stage and dividing by the total recording time.

49



0 25 50 75 100
Average SE (%)

40

20

0

20

40

PS
G

 S
E 

- P
PG

 S
E 

(%
)

Mean:
-2.7 

1.96SD:
19.3 

-1.96SD:
-24.8 

3-stage classification

0 25 50 75 100
Average SE (%)

Mean:
-2.0 

1.96SD:
21.5 

-1.96SD:
-25.4 

4-stage classification

0 25 50 75 100
Average SE (%)

Mean:
1.9 

1.96SD:
25.7 

-1.96SD:
-22.0 

5-stage classification

0 200 400 600
Average TST (min)

200

100

0

100

200

PS
G

 T
ST

 - 
PP

G
 T

ST
 (m

in
)

Mean:
-12.2 

1.96SD:
90.9 

-1.96SD:
-115.3 

0 200 400 600
Average TST (min)

Mean:
-8.8 

1.96SD:
99.3 

-1.96SD:
-116.9 

0 200 400 600
Average TST (min)

Mean:
7.5 

1.96SD:
115.1 

-1.96SD:
-100.1 

Figure 6.7: Bland-Altman plots for the total sleep time (TST) and sleep efficiency
(SE) from the photoplethysmogram-based automatic sleep staging with 3-, 4-, and
5-stage classifications. The plots represent the average parameter values and the
difference between the values based on the manual and the automatic sleep staging.
Figure reconstructed based on study III.
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6.4 DETAILED ANALYSIS OF SLEEP ARCHITECTURE WITH DEEP
LEARNING

In study IV, the deep learning-based automatic sleep staging developed in study
II was applied to identify sleep stages with varying degrees of overlap between
the 30-second epochs to enable the deep learning-based method to assess the sleep
architecture in more detail and to better detect the transitions between sleep stages.
The sleep architecture and sleep fragmentation of individuals in each OSA severity
group determined with the deep learning-based sleep staging were compared using
the traditional non-overlapping 30-second epochs and with 15-, 5-, or 1-second
epoch-to-epoch durations.

6.4.1 Sleep stage percentages and sleep parameters

In the severe OSA group, the amount of wake and N1 increased with shorter
epoch-to-epoch durations revealing the disrupted sleep architecture characterized
by numerous awakenings during the night (Table 6.7). Simultaneously, the amount
of deep sleep decreased with shorter epoch-to-epoch durations. Conversely, in the
groups with non-OSA, mild OSA, and moderate OSA, the percentage of wake
and N1 decreased while the amount of N3 increased with shorter epoch-to-epoch
durations. This OSA-related sleep fragmentation could not be captured when
identifying sleep stages automatically with non-overlapping epochs. Thus, the more
detailed assessment of sleep architecture with shorter epoch-to-epoch durations
revealed major differences in the sleep architecture especially between severe OSA
and non-OSA groups. An example of sleep stages identified with the traditional
approach along with varying the epoch-to-epoch durations is illustrated in Figure
6.8.

Similar differences were found when assessing sleep parameters (total sleep
time, TST; sleep efficiency, SE; wake after sleep onset, WASO) derived from
the deep learning-based sleep staging using the traditional approach and with
shorter epoch-to-epoch durations (Table 6.8). In the severe OSA group, the shorter
epoch-to-epoch durations decreased the values of the TST and SE while increasing
the WASO. In the non-OSA group, the effect was in the opposite pattern: TST and
SE increased and WASO decreased with shorter epoch-to-epoch durations.
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Table 6.7: The sleep stage percentages with varying epoch-to-epoch durations in obstructive
sleep apnea (OSA) severity groups.

Epoch-
to-epoch
duration

Wake
(% of recording)

N1
(% of sleep)

N2
(% of sleep)

N3
(% of sleep)

REM
(% of sleep)

Non-OSA
Original: 30 s 33.3 11.6 50.1 19.3 19.0

15 s 31.5 9.6 52.6 19.9 17.8
5 s 27.9 6.1 54.5 22.1 17.3
1 s 26.9 4.9 55.0 22.4 17.7

Mild OSA
Original: 30 s 32.4 11.9 52.0 16.8 19.3

15 s 32.5 9.5 54.3 18.4 17.8
5 s 29.6 6.8 55.8 20.4 17.0
1 s 27.3 5.7 57.1 20.6 16.6

Moderate OSA
Original: 30 s 31.5 12.1 52.8 16.8 18.4

15 s 31.7 9.8 54.1 18.4 17.7
5 s 31.9 8.0 56.5 18.7 16.7
1 s 30.2 7.3 57.9 18.4 16.4

Severe OSA
Original: 30 s 32.0 12.2 52.5 17.1 18.1

15 s 33.5 12.1 54.7 15.3 17.8
5 s 36.8 14.8 56.2 13.3 15.7
1 s 35.6 15.5 56.0 13.6 14.8
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Table 6.8: Total sleep time, wake after sleep onset, and sleep efficiency
with varying epoch-to-epoch durations in obstructive sleep apnea
(OSA) severity groups.

Epoch-to-epoch
duration

Total sleep
time (min)

Wake after
sleep onset (min)

Sleep
efficiency (%)

Non-OSA
Original: 30 s 296.3 (78.3) 138.7 (66.0) 66.6 (15.5)

15 s 304.1 (77.4) 131.7 (67.6) 68.4 (15.6)
5 s 319.9 (73.2)† 119.1 (63.7)† 72.0 (14.8)†

1 s 324.4 (78.7)† 116.2 (68.3)† 72.9 (15.9)†

Mild OSA
Original: 30 s 300.3 (79.0) 135.5 (74.0) 67.7 (16.7)

15 s 300.0 (83.4) 137.7 (74.0) 67.4 (17.0)
5 s 312.6 (75.5) 127.8 (70.0) 70.4 (15.3)
1 s 323.1 (77.1)† 117.5 (71.0)† 72.8 (15.6)†

Moderate OSA
Original: 30 s 305.1 (76.4) 133.5 (71.2) 68.6 (15.6)

15 s 304.5 (70.6) 135.5 (71.3) 68.6 (15.0)
5 s 303.7 (73.5)* 137.2 (64.4)* 68.1 (14.3)*
1 s 311.2 (77.1)* 129.9 (69.1)* 69.7 (15.4)*

Severe OSA
Original: 30 s 299.3 (73.1) 134.4 (69.7) 68.1 (15.1)

15 s 292.8 (77.3) 142.7 (70.3) 66.4 (15.7)
5 s 278.4 (75.8)*† 158.3 (74.2)*† 63.4 (16.3)*†

1 s 283.7 (82.2)* 152.6 (80.3)*† 64.6 (17.9)*

A statistically significant difference (p < 0.05) compared to the traditional sleep staging
with non-overlapping epochs is denoted with a dagger (†) and between OSA severity
groups when compared to the group without OSA is denoted with an asterisk (*).
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Figure 6.8: Examples of sleep stages scored with the traditional,
non-overlapping epochs and scored with decreasing epoch-to-epoch
duration between epochs. Figure reconstructed based on study IV.

6.4.2 Assessing sleep fragmentation via survival analysis

No significant differences in sleep fragmentation between the non-OSA and OSA
severity groups were visible when the deep learning-based sleep staging was
conducted with traditional non-overlapping epochs. The hazard ratios illustrating
the risk of fragmented sleep (i.e. a short mean duration of continuous sleep periods)
were close to one and were not statistically significant for any of the OSA severity
groups when using non-overlapping epochs. Furthermore, no notable differences
in the Kaplan-Meier survival curves (Figure 6.9) were observed. When the sleep
fragmentation was evaluated based on the more detailed sleep staging with shorter
epoch-to-epoch durations, differences emerged between the non-OSA and the OSA
severity groups. The Kaplan-Meier survival curves (Figure 6.9) revealed differences
in the sleep fragmentation between the groups; the mean duration of sleep periods
decreased with increasing OSA severity. Similarly, the hazard ratios for fragmented
sleep increased with decreasing epoch-to-epoch duration (Table 6.9). With the
1-second epoch-to-epoch duration, the hazard ratios were 1.21 (p = 0.06), 1.67 (p
< 0.01), and 3.90 (p < 0.01) in the mild, moderate, and severe OSA groups.
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Figure 6.9: Kaplan-Meier survival curves representing the sleep continuity
with different epoch-to-epoch durations. The curves illustrate the mean
duration of continuous sleep in each obstructive sleep apnea group (OSA).
Figure reconstructed based on study IV.
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Table 6.9: The hazard ratios for fragmented sleep in
obstructive sleep apnea (OSA) severity groups.

Epoch-to-epoch
duration

Hazard ratio
95% confidence

interval
p

Mild OSA
Original: 30 s 1.00 0.82-1.21 0.97

15 s 1.20 0.98-1.46 0.08
5 s 1.31 1.07-1.59 0.01
1 s 1.21 0.99-1.48 0.06

Moderate OSA
Original: 30 s 1.05 0.85-1.29 0.66

15 s 1.14 0.93-1.41 0.21
5 s 1.64 1.33-2.03 <0.01
1 s 1.67 1.35-2.06 <0.01

Severe OSA
Original: 30 s 1.05 0.86-1.29 0.61

15 s 1.58 1.29-1.93 <0.01
5 s 3.54 2.88-4.36 <0.01
1 s 3.90 3.17-4.81 <0.01

The hazard ratios for fragmented sleep were calculated using the Cox
proportional hazards model where the studied event was awakening
from sleep and the time to event was the mean duration of sleep periods
for each individual. Within each epoch-to-epoch duration, the sleep
fragmentation is compared to the non-OSA group.
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7 Discussion

Study I revealed that the AHI thresholds currently used in the severity classification
of OSA are not optimal while the threshold combination of 3-9-24 h−1 could improve
the classification so that it would better reflect the OSA-related risk of all-cause
mortality. Study II presented a deep learning-based sleep staging method with
an accuracy comparable to manual sleep staging, even with only a single frontal
EEG channel. Study III further demonstrated that sleep staging is possible based
solely on a photoplethysmogram (PPG) signal measured with a simple finger pulse
oximeter. Study IV further implemented the deep learning approach to achieve a
more detailed analysis of sleep architecture. This revealed the highly fragmented
sleep architecture of OSA patients which remains heavily overlooked with the
traditional sleep staging.

7.1 OPTIMIZING THE SEVERITY ASSESSMENT OF OSA

In study I, the AHI-based severity classification of OSA was optimized with
regards to the risk of all-cause mortality in a retrospective follow-up of a large
population (n = 1783, mean follow-up time = 18.3 years) of patients having
undergone an ambulatory polygraphy. The results indicated that the current
threshold combination of 5-15-30 h−1 is not optimal for assessing OSA severity.
Instead, the AHI threshold combination of 3-9-24 h−1 would better differentiate
patients into OSA severity categories with regards to the risk of all-cause mortality.
These optimized thresholds would ensure that an increase in the OSA severity can
be correlated with an increase in the risk of all-cause mortality. However, the hazard
ratios representing the risk of all-cause mortality varied greatly across the threshold
simulations. This emphasizes that the AHI is not the sole factor determining the
severity of OSA and thus more comprehensive measures of disease severity are
needed.

The main determining factor for the magnitude of the hazard ratios for all the
OSA severity categories was the threshold for dividing between the non-OSA and
mild OSA categories. The results indicate that this threshold should be lowered
from the current AHI value of 5 h−1, as the hazard ratios increased when reducing
this threshold. The results suggest that the patients with an AHI between 3 and
5 h−1 also suffer from an elevated risk of OSA-related all-cause mortality. After
lowering this threshold to 3 h−1, the overall risk of all-cause mortality decreased in
the non-OSA category which in turn increased the hazard ratios in the other OSA
severity categories. However, if the threshold value was decreased below 3 h−1, the
hazard ratios of all severity categories relative to the non-OSA category began to
decrease as patients with a low risk of OSA-related all-cause mortality were now
classified as having mild OSA. Furthermore, the results suggest that the thresholds
between mild and moderate, and between moderate and severe OSA should be
lowered to 9 h−1 and 24 h−1, respectively. This would enable better differentiation
of patients into OSA severity categories and achieve a more linear increase in the
risk of all-cause mortality when progressing towards more severe OSA.
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The utilization of the optimized OSA thresholds could significantly change the
OSA severity assessment and treatment decisions. The thresholds used to classify
OSA severity are currently applied to provide information about the disease to
patients and to guide the treatment decision making. Rigorous thresholds and
guidelines are required to persuade payers of subsidized therapy in insurance
companies and healthcare systems. For example, in some healthcare systems,
only patients with moderate-to-severe OSA can receive government- or health
insurance-subsidized therapy. With the optimized threshold combination of
3-9-24 h−1 the percentage of patients belonging to the moderate-to-severe OSA
category increased from 27% to 39% in our studied population. Therefore, this
classification could increase the number of patients receiving treatment thus
elevating treatment-related healthcare costs. However, Ronald et al. [49] have
previously shown that healthcare costs of OSA patients are higher than those of
matched individuals without OSA, even before the OSA diagnosis. Furthermore,
Albarrak et al. [50] demonstrated that these elevated costs of OSA patients become
reduced to the same level as the healthy population after OSA treatment. Therefore,
lowering the OSA severity thresholds could, in reality, reduce the long-term costs for
healthcare systems by reducing OSA-related health consequences while improving
the quality of life of OSA patients. However, further studies are warranted to
thoroughly assess the healthcare costs after the utilization of the proposed lower
severity thresholds.

The hazard ratios for the OSA severity categories were strongly dependent on
the thresholds and varied significantly across different combinations. The most
likely explanation behind this phenomenon is that the AHI does not fully capture
the OSA severity and the risk of OSA-related health consequences. This proposition
is also supported by previous studies; it has been shown that patients with similar
AHI values can suffer from different degrees of physiological consequences caused
by the respiratory events, for example, different depths and durations of the
respiratory event-related oxygen desaturations [157]. Furthermore, patients with
similar AHI values can have a different OSA phenotype and a differing risk of
various severe health consequences [117]. Previous studies have also illustrated that
it is the severity of desaturations that better reflects the OSA-related sleepiness and
impaired vigilance rather than the AHI [6, 43]. Therefore, it might be beneficial
to assess the severity of OSA in a more individualized manner by considering
the physiological effects, risk factors, and health outcomes rather than simply the
number of the respiratory events. For example, even though OSA patients suffer
from highly fragmented sleep, as was reported in study IV, the extent of sleep
fragmentation is not considered when assessing the severity of OSA. Furthermore,
the severity of the desaturations is also completely overlooked when classifying
patients into OSA severity categories. Therefore, the OSA severity may be better
captured by supplementing the current AHI-based classification with an assessment
of sleep fragmentation and sleep quality and with the severity of hypoxemia and
other physiological effects of respiratory events. Therefore, further studies are
warranted to improve the OSA severity classification as well as optimizing the
AHI-based severity classification.

The main limitation of study I is that the thresholds were optimized only for
ambulatory polygraphy scored using a 4% desaturation threshold for identifying
hypopneas. As PSGs enable the identification of arousal-related hypopneas, the
total number of respiratory events is higher as compared to polygraphy. This effect
can also be observed from the results of study III, where the mean PSG-AHI was
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24.2 h−1 whereas the PG-AHI was 18.8 h−1 (Table 6.6). Therefore, it could be argued
that the optimal thresholds for PSG would be higher than the suggested 3-9-24
h−1. Furthermore, scoring the hypopneas by using a 3% desaturation threshold
affects the number of identified respiratory events and it has been shown that this
causes the AHI to significantly increase [52, 53]. Thus, it is reasonable to assume
that when using the 3% desaturation threshold, the optimal thresholds would be
higher than with the suggested 3-9-24 h−1. However, it has been suggested that the
thresholds used for OSA severity classification should not remain the same for PG
and PSG recordings nor with different desaturation thresholds [54, 158]. Therefore,
the optimized thresholds of 3-9-24 h−1 could only be considered as optimized for
polygraphic studies and a 4% desaturation threshold. Further studies are warranted
to perform a similar simulation-based approach to optimize the thresholds for
PSGs, a 3% desaturation threshold and also for other outcomes in addition to the
risk of all-cause mortality.

7.2 DEEP LEARNING-BASED SLEEP STAGING

In study II, the accuracy of the developed deep learning-based method for automatic
sleep staging based on EEG and EOG compared favourably to previous automatic
sleep staging approaches and to the inter-rater reliability between two expert
manual scorers. The Cohen’s kappa coefficient (κ) illustrating inter-rater reliability
between two manual scorers is generally around 0.76 [159] but can be as low as
0.58 to 0.63 between sleep centers [160, 161]. Furthermore, in a previous study
conducted in the Princess Alexandra Hospital’s Sleep Center, where the clinical
dataset used in this study was collected, the mean (standard deviation) kappa was
0.74 (0.02) [162]. Therefore, the two-channel and single-channel kappa values of 0.78
and 0.77, respectively, indicate a similar agreement as achieved with manual sleep
staging conducted by two manual scorers.

Furthermore, the developed deep learning-based sleep staging method
surpassed the accuracy of previous automatic approaches when tested using the
Sleep-EDF dataset [143, 144] (Table 6.3). However, only Mousavi et al. [121] and
Phan et al. [132] have previously used the updated Sleep-EDF dataset comprising
153 recordings. Similarly as in study II, they both included only 30 minutes of
wakefulness before and after the sleep period and used ten-fold cross-validation.
Mousavi et al. [121] achieved an accuracy of 80.03% (κ = 0.73) with a single EEG
channel and Phan et al. reported an accuracy of 82.6% (κ = 0.76). The accuracy
achieved in study II was 83.7% (κ = 0.77). Other studies utilized the older version
of the Sleep-EDF dataset with only 39 recordings [122–125, 127] which hinders any
direct comparison with these studies. However, Mousavi et al. [121] compared the
accuracy of their method between the updated and the original Sleep-EDF dataset
and demonstrated that the accuracy was significantly higher with the smaller
dataset (84.26% accuracy vs. 80.03% accuracy). Furthermore, it is noteworthy that the
results are only comparable to studies that have removed long wakefulness periods
before and after sleep and have used an independent test set during evaluation.
Some previous studies have included the easily identifiable excessive wake periods
and did not have an independent test set, and have thus obtained overly optimistic
results distorted by overfitting. These methodologically weak studies were excluded
from the comparison.
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The PPG-based automatic method published in study III differs from earlier
approaches to identify sleep stages without relying on EEG. Previous approaches
have generally relied on features of the ECG-derived heart rate variability (HRV)
[134] usually accompanied by a recording of overnight movement [136] and
respiratory effort [135]. In addition to ECG, the HRV features can be estimated to
some extent from the PPG signal, and therefore efforts have been made to exploit
the PPG-estimated HRV features for identifying sleep stages [138–142]. Aside from
relying on estimated features, these approaches have relied on a simultaneous
actigraphy recording. However, changes in the PPG signal have been previously
linked to sympathetic activation [87, 88], EEG power density, and cortical activity
during sleep [87]. This supports the exploitation of the full PPG signals without
manually derived features in an end-to-end approach for sleep staging, as conducted
in study III.

The accuracy of the PPG-based sleep staging method developed in study III
compared favourably with previous studies attempting sleep staging from PPG,
even though these studies have examined only a relatively small number of
healthy individuals (n = 10–152) [138–142]. In these previous studies, a 2-stage
sleep-wake classification has been conducted with 72% –77% accuracy [140–142],
the 3-stage classification (wake/NREM/REM) with an accuracy of 73% (κ = 0.46)
[138], and the 4-stage classification (wake/light sleep/deep sleep/REM) with an
accuracy of 59%–69% (κ = 0.42–0.52) [138, 139]. In comparison, the PPG-based
approach developed in study III achieved an accuracy of 80% (κ = 0.65) in the
3-stage classification, and 69% (κ=0.54) in the 4-stage classification. Furthermore, the
results compare favourably with the ECG-based approaches, which have achieved
accuracies of 80%–82% (κ = 0.56–0.63) in the 3-stage, and 69%–75% (κ = 0.49–0.54)
in the 4-stage classification [134, 135]. Therefore, the results obtained in study III
illustrate that the PPG-based sleep staging can be conducted with good accuracy
by using the complete PPG signals without relying on a simultaneous actigraphy
recording, and furthermore that the method is applicable in OSA patients.

Sleep staging is generally problematic in individuals affected by OSA. The
reliability of manual sleep staging based on PSGs is lower in OSA populations
[163,164]. This has also hindered previous automatic EEG-based approaches [128] as
deep learning-based scoring learns from the manual analysis. The lower reliability
is most likely due to the fragmented sleep structure and the increased amount of
N1 sleep which is characteristic for OSA patients. The fragmented sleep structure
and increased amount of N1 sleep can be further observed from Table 5.3 and the
results of study IV (Table 6.9 and Figure 6.9). In study II, it was observed that
the accuracy of the sleep staging decreased when progressing towards more severe
OSA (Table 6.4 and Figure 6.4). For example, the accuracy in the non-OSA group
was 84.5% declining to 76.5% in severe OSA patients. In the severe OSA group, the
amount of N1 sleep was 15% of the recording, while in the individuals without
OSA, the percentage of N1 was only 6%. The accuracy in identifying N1 was always
the lowest of all sleep stages (Figure 6.4). The consistent decrease in epoch-by-epoch
accuracy with increasing OSA severity is, therefore, most likely due to the increasing
amount of N1 and the increased number of transitions between sleep stages during
the night. The results of study IV also support this proposal, since it was observed
that the sleep architecture of severe OSA patients was highly fragmented.

A more accurate automatic sleep staging could have significant benefits in
a clinical setting. The main advantage of automatic sleep staging would be the
capability to consistently identify the sleep stages. Furthermore, the reliability
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was already on par with a manual sleep staging in study II, and the automatic
approach was able to conduct the sleep staging for a single night in a matter of
seconds. Currently, the manual identification of sleep stages displays poor inter-rater
reliability, especially between several individual sleep centers [159–161, 163–165].
The automatic method always conducts the sleep staging consistently without being
affected by human factors, such as vigilance level, scoring environment, or human
error. Furthermore, the current clinical practice of manual sleep staging poses a
significant workload on trained professionals forcing them to conduct a highly
repetitive and tedious task. Therefore, the automatic sleep staging could alleviate
the clinical burden and free the valuable time of healthcare professionals for more
meaningful tasks such as interpreting the results and conveying the information
to patients. Moreover, future directions should include automatic scoring of all the
identified events (e.g. respiratory disruptions, leg movements) incorporated into a
single entity. Ultimately, these could make it possible to provide more individualized
treatment planning.

Furthermore, the methods developed in studies II and III together provide
opportunities for a more comprehensive utilization of ambulatory polygraphic
studies. Various ambulatory EEG acquisition systems have already been developed
[93–95, 166] and have a considerable potential to be implemented together with
the automatic sleep staging outside sleep laboratories. Furthermore, the PPG-based
sleep staging approach developed in study III would not require any modifications
to the currently conducted polygraphic studies. Generally, a PG signal is already
recorded in most polygraphic studies with a finger pulse oximeter and the deep
learning-based approach developed in study III could be easily integrated into
these recordings. Therefore, the PPG-based sleep staging could significantly enhance
the polygraphic recordings and increase their diagnostic yield. The accuracy of the
PPG-based sleep staging was lower than a staging based on a single-channel EEG
(64.1% vs 82.9%). Nevertheless, the mean difference in total sleep time was only
7.5 min when compared to manual sleep staging despite the presence of some
outliers (Figure 6.7) that led to a relatively large standard deviation of 55.2 min.
Furthermore, the PPG-AHI only differed from the PSG-AHI on average by -0.9 h−1.
Therefore, depending on the required level of accuracy, either the single-channel
EEG- or PPG-based sleep staging approach could be an extremely useful way to
gain insights into the sleep architecture and sleep quality as well as helping in the
diagnosis of other sleep disorders based on polygraphy, for example, REM-related
OSA. Furthermore, the PPG-based sleep staging would provide an inexpensive way
to undertake a long-term monitoring of sleep and could be used to supplement
the current actigraphy-based methods. However, both the EEG- and PPG-based
approaches will require further studies to validate their performance when applied
with ambulatory methods.

Besides the applications in a clinical setting, the developed sleep staging
methods have the potential to be incorporated into various consumer health
technology devices. Currently, a reflective PPG measurement is already included
in consumer-grade wearable self-tracking devices. Some of these already claim to
measure sleep duration and sleep quality but they lack clinical validation and the
implemented algorithms are not in the public domain [167–170]. Conversely, the
PPG-based sleep staging in study III already provided highly promising results in a
clinical population of patients in whom there was a suspicion of OSA. This reveals
the potential of PPG-based sleep staging in individuals affected by sleep disorders
and could enable a simple solution for monitoring sleep quality and identifying
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sleep disorders, even with consumer-grade devices. However, as the reflective PPG
measurement differs fundamentally from a transmissive measurement and causes
additional challenges, further studies will be necessary to validate the performance
of the deep learning-based method published in study III with data collected
using reflective sensors integrated into consumer-grade wearable devices. Similarly,
even the EEG-based sleep staging could become feasible in consumer-grade
health technology devices measuring a limited number of EEG channels. In these
devices, the integration of the deep learning-based sleep staging could enable the
long-term monitoring of sleep and with further development, identify abnormal
sleep architecture. However, these possibilities will require further validation with
data collected using consumer-grade technologies.

The most significant limitation of studies II and III was the low agreement
with manual sleep staging in detecting N1 sleep. With the EEG-based approach,
the accuracy in detecting N1 varied between 28% and 47%, while the accuracy in
the PPG-based approach was 13%. However, the agreement between manual scorers
is similarly at its lowest when identifying the N1 sleep stage [163, 165]: the kappa
value representing the N1 agreement of manual scorers is only between 0.19 and 0.46
[159–161]. Therefore, the low N1 agreement may be caused by the scoring rules for
N1 and the extensive disagreement between manual scorers. Furthermore, the lower
N1 accuracy with the PPG-based sleep staging when compared to the EEG-based
approach may be due to insufficiently small differences in the PPG signal between
the N1 and N2 stages, as the N1 was usually misidentified as N2. These results
raise the question of whether the differentiation of N1 from N2 would actually
be required for all applications. Aside from this, the current sleep staging practice
suffers from arbitrary rules which do not have extensive foundation on physiological
factors [13, 146, 171]. Furthermore, the use of non-overlapping 30-second epochs
significantly overlooks many transitions between stages, which was also observed
in study IV. Thus, the agreement with the manual sleep staging of PSG does not
necessarily fully reflect the true accuracy of the automatic sleep staging method;
thus, further studies are warranted to determine how the EEG- and PPG-based
sleep staging approaches can capture the physiological changes occurring during
the night and how they reflect the outcomes of sleep quality, for example, the
presence of daytime sleepiness and deteriorated vigilance.

7.3 DETAILED ANALYSIS OF SLEEP ARCHITECTURE

In study IV, the deep learning-based sleep staging approach developed in study
II was implemented to analyse sleep architecture in a more detailed manner. The
automatic sleep staging from study II based on EEG and EOG channels was
applied to identify sleep stages by taking new 30-second epochs with varying
epoch-to-epoch durations and allowing for an overlap between consecutive epochs.
The main result from study IV was that the more detailed sleep staging with
shorter epoch-to-epoch duration revealed the highly disrupted sleep architecture of
OSA patients which had been severely underestimated when the sleep staging was
conducted with traditional non-overlapping epochs.

Shorter epoch-to-epoch durations revealed larger differences in the sleep stage
percentages and sleep parameters (total sleep time, TST; sleep efficiency, SE; and
wake after sleep onset, WASO) between the population without OSA and those
individuals with severe OSA in comparison with the traditional non-overlapping
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epochs. In the non-OSA group, the amount of wakefulness and REM decreased
with shorter epoch-to-epoch durations, while the amount of N2 and N3 increased.
Furthermore, a similar effect was observed in the mild and moderate OSA groups.
In contrast, the N1 and wakefulness increased while N3 decreased in the severe OSA
group with shorter epoch-to-epoch durations. Similarly, TST and SE decreased and
WASO increased in the severe OSA group with shorter epoch-to-epoch durations
with an opposite effect being evident in the population without OSA. These results
illustrate that severe OSA patients suffer from more disrupted sleep than can be
estimated when the sleep staging is conducted with traditional non-overlapping
epochs.

Sleep staging with shorter epoch-to-epoch durations revealed differences
in the sleep fragmentation between all of the OSA severity groups and the
non-OSA group. When the deep learning model identified sleep stages with
traditional non-overlapping epochs, neither the hazard ratios representing the risk
of fragmented sleep (Table 6.9) nor the Kaplan-Meier survival curves (Figure 6.9)
revealed any differences between the OSA severity groups. However, by applying
overlapping epochs with shorter epoch-to-epoch durations, significant differences
began to emerge; for example, with 1-second epoch-to-epoch duration, the hazard
ratios representing sleep fragmentation were 1.21 (p = 0.06) for mild, 1.67 (p <
0.01) for moderate, and 3.90 (p < 0.01) for severe OSA. Similarly, the Kaplan-Meier
curves revealed differences between all of the severity groups. It is noteworthy
that the mean duration of continuous sleep periods within all severity groups and
non-OSA group decreased with shorter epoch-to-epoch durations. However, this
is an expected result as the sleep staging with shorter epoch-to-epoch durations
provides a means to more comprehensively assess the sleep architecture while
capturing more of the wake transitions during the night.

The more detailed assessment of sleep architecture revealed that the deep
learning-based sleep staging with the traditional non-overlapping epochs
underestimates the sleep fragmentation of severe OSA patients; however, this
phenomenon was only seen to some extent in mild and moderate OSA patients.
While the shorter epoch-to-epoch durations increased the differences in sleep stage
percentages and sleep parameters between severe OSA and non-OSA groups, only
small differences emerged between the mild or moderate OSA and the non-OSA
groups. Overall, shortening of the epoch-to-epoch durations in the mild and
moderate OSA groups produced similar effects than in the non-OSA group; for
example, the percentage of N1 and wake decreased while that of N3 increased.
However, differences between mild and moderate OSA and non-OSA groups
emerged in the survival analysis-based assessment of sleep continuity, revealing
that mild-to-moderate OSA causes sleep fragmentation but to a smaller extent
than severe OSA. A similar phenomenon was observed by Norman et al. [42] who
detected no significant differences between normal and mild OSA groups was
observed in traditional sleep parameters whereas an assessment of sleep continuity
via survival analysis was able to distinguish differences even between these two
groups. One explanation for the small differences in sleep stage percentages and
sleep parameters (TST, SE, WASO) between the mild or moderate OSA and the
non-OSA groups could be the highly artificial classification into the severity groups
as was observed in study I. As the more detailed sleep staging revealed differences
in the sleep fragmentation between the OSA severity groups, this could provide a
feasible way to assess OSA severity alongside the more conventional respiratory
and hypoxemia-related methods. Thus, further studies incorporating these aspects
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in OSA severity assessment are warranted.
Overall, the results of study IV illustrated that while automatic sleep staging

with traditional non-overlapping epochs might be sufficient in healthy populations,
a more detailed assessment is required when investigating individuals affected by
sleep disorders or other disorders potentially affecting sleep. This is supported
by the fact that the whole sleep staging process was originally designed based
on a healthy population [12, 13]. The approach developed in study IV would
provide a novel way to achieve a more realistic representation of the disrupted
sleep architecture of individuals with sleep disorders, which appear to be seriously
overlooked in the traditional sleep staging. Ultimately, this might result in a more
informed, detailed, and individualized diagnosis of sleep disorders, which could
enhance the severity classification of OSA, and even guide treatment planning.
Additionally, an interesting topic for further studies would be determining the
connection between the sleep architecture assessed via the more detailed approach
and perceived sleep quality, daytime sleepiness and vigilance, therapeutic outcomes,
and the risk of comorbidities.

Study IV was based on identifying sleep stages in overlapping 30-second
epochs which is simultaneously the strength and limitation of the study. The sleep
architecture determined with shorter epoch-to-epoch durations is interpretable
similarly as the traditional sleep staging. The detailed approach enables the deep
learning-based method to detect sleep stage transitions with a better temporal
resolution, a factor which could be crucial in the diagnosis of sleep disorders.
However, the study was still based on identifying discrete sleep stages for
30-second epochs and does not provide a continuous scale representing the depth
of sleep. This has been previously attempted based on the frequency content
of EEG [146, 171]. However, in these studies sleep depth was represented in
an arbitrarily chosen continuous scale which cannot be as easily interpreted.
Furthermore, in study IV, arousals from sleep were not considered in order
to avoid relying on manual scoring which usually suffers from a low arousal
scoring reliability [172]. Therefore, future studies are warranted to incorporate
and compare the developed method alongside a continuous scale of sleep depth
while also identifying and assessing arousals from sleep. Finally, the sleep staging
was conducted with the deep learning-based approach developed in study II.
The manual analysis was discarded to enable a reliable comparison between the
different epoch-to-epoch durations. Therefore, the results can only be generalized to
the deep learning-based sleep staging. No conclusions can be made about whether a
manual analysis would behave similarly if sleep staging were to be conducted with
shorter epoch-to-epoch durations instead of the traditional approach. However,
manual analysis with overlapping epochs could be biased and impractical as the
number of epochs that would require scoring would increase substantially as the
changes between consecutive epochs became smaller.
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8 Conclusions

The results included in this thesis demonstrated that the diagnostics of sleep
disorders could be made more efficient and accurate with the application of deep
learning. The assessment of obstructive sleep apnea severity can be optimized by
simulating various threshold combinations and defining the severity of OSA based
on the risk of severe health outcomes. Sleep staging, which is the cornerstone
of sleep medicine, can be automatized with deep learning-based methods; these
are able to reach clinical accuracy while remaining perfectly reproducible. With
deep learning, sleep staging is possible with lighter measurement setups: a single
EEG-channel or even a PPG measured with a simple finger pulse oximeter.
Finally, the sleep architecture can be analysed in more detail by implementing
deep learning-based sleep staging with shorter epoch-to-epoch durations. This
can provide crucial insights into the sleep fragmentation occurring in individuals
suffering from sleep disorders.

The main conclusions corresponding to the aims of the thesis are:

1. The current severity classification of obstructive sleep apnea based on
the apnea-hypopnea index thresholds 5-15-30 h−1 is not optimal in
characterizing the risk of OSA-related all-cause mortality. These thresholds
should be optimized for each measurement technique or the apnea-hypopnea
index-based severity assessment needs to be supplemented with more
comprehensive measures of the disease severity.

2. Sleep staging can be conducted automatically at an accuracy on par with a
manual assessment conducted by expert somnologists by using deep learning
methods. Accurate sleep staging is possible based on a single frontal EEG
channel even in a clinical population of patients with suspected OSA. This
could represent an easily applicable and cost-effective way of conducting sleep
staging in clinical practice.

3. PPG measured with a simple finger pulse oximeter can be used for deep
learning-based sleep staging. This enables a reasonably accurate determination
of total sleep time and the sleep stages can be identified with a moderate
agreement with the EEG-based sleep staging. As PPG is straightforward to
record and has been already integrated into ambulatory recording setups,
a deep learning-based sleep staging could achieve a cost-effective long-term
assessment of sleep architecture based on home recordings which could
significantly increase their diagnostic value.

4. Shorter epoch-to-epoch durations enabled the deep learning-based sleep
staging to assess sleep architecture in more detail and thus reveal the highly
fragmented sleep of patients suffering from severe OSA, which is easily
overlooked with the traditional sleep staging. A more detailed assessment of
sleep architecture would be paramount when assessing the sleep quality of
individuals suffering from sleep disorders.
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In summary, deep learning has immense potential to revolutionize the field of
sleep medicine. With deep learning, the diagnostic processes can be made more
efficient by reducing the number of signals that are required and by making the
processes less reliant on the time-consuming and error-prone manual analysis.
The diagnosis could become more consistent and informative by assessing the
sleep architecture automatically and in more detail. Finally, the diagnostic yield
of home-based measurements could be significantly increased and brought closer to
the diagnostic accuracy of in-lab measurements.
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suspectedOSAwereusedtodevelopacombinedconvolu-
tionalandlongshort-termmemoryneuralnetwork.Onthe
publicdataset,themodelachievedsleepstagingaccuracy
of83.7%( κ = 0.77)withasinglefrontalEEGchanneland
83.9%( κ = 0.78)whensupplementedwithEOG.Forthe
clinicaldataset,themodelachievedaccuraciesof82.9%
(κ = 0.77)and83.8%( κ = 0.78)withasingleEEGchannel
andtwochannels(EEG +EOG),respectively.Thesleep
stagingaccuracydecreasedwithincreasingOSAseverity.
Thesingle-channelaccuracyrangedfrom84.5%( κ = 0.79)
forindividualswithoutOSAdiagnosisto76.5%( κ = 0.68)
forpatientswithsevereOSA.Inconclusion,deeplearning
enablesautomaticsleepstagingforsuspectedOSA
patientswithhighaccuracyandexpectedly,theaccuracy
decreasedwithincreasingOSAseverity.Furthermore,the
accuraciesachievedinthepublicdatasetweresuperiorto
previouslypublishedstate-of-the-artmethods.Addingan
EOGchanneldidnotsignificantlyincreasetheaccuracy.
Theautomatic,single-channel-basedsleepstagingcould
enableeasy,accurate,andcost-efficientintegrationofEEG
recordingintodiagnosticambulatoryrecordings.

Index Terms—Deeplearning,Electroencephalography,
Obstructivesleepapnea,Recurrentneuralnetwork,Sleep
staging.

I.I NTRODUCTION

IDENTIFICATION of sleep stages is crucial in diagnostics
of various sleep disorders. One of the most common sleep

disorders is obstructive sleep apnea (OSA) which has been
estimated to affect up to 38% of the general population [1].
In the diagnosis of OSA, sleep staging is conducted to assess
the sleep characteristics and to accurately determine the total
sleep time [2]. Accurate determination of total sleep time is of
paramount importance as it significantly affects the parameters
used to assess the severity of OSA.

According to the current sleep staging criteria [2], sleep is
classified into five different stages: wake, rapid eye movement
(REM) sleep and three stages of non-REM sleep (N1–N3). Clas-
sification into these stages is performed manually for 30-second
epochs of sleep using electroencephalography (EEG), elec-
trooculogram (EOG), and submental electromyogram (EMG)
signals measured during polysomnography (PSG). Currently, at
least 13 electrodes, with the positions determined by the Interna-
tional 10-20 System, are required for the measurement protocol
[2]. Thus, the overall measurement protocol and the sleep staging

ThisworkislicensedunderaCreativeCommonsAttribution4.0License.Formoreinformation,seehttps://creativecommons.org/licenses/by/4.0/
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process is time-consuming, laborsome, and requires experienced
professionals [3].

Despite the major effort and expenses that go into manual
sleep staging, there are still shortcomings. Mainly, the agree-
ment of two different scores is generally unsatisfactory [4]–[9].
The inter-rater reliability (IRR), measured with Cohen’s kappa,
between two scorers using the current sleep scoring criteria
is commonly around 0.78 [4]. However, between international
sleep centers, the reliability can be as low as 0.58 to 0.63 [5],
[6], particularly due to poor scoring of N1 sleep [7], [8]. It has
been shown that the agreement of N1 is approximately only 0.46
between sleep laboratories within Europe [4] and as low as 0.19
to 0.31 between international centers [5], [6]. Furthermore, the
overall reliability of manual sleep staging may further decrease
if an individual is experiencing medical conditions, for example,
with OSA patients the reliability is worse than that of healthy in-
dividuals [8], [9]. Automatic scoring methods could potentially
improve the consistency of sleep staging between different hos-
pitals and healthcare systems. Furthermore, automatic methods
capable of accurate sleep staging with a minimal number of
measured signals could simplify the measurement protocol and
reduce the related costs.

A number of automatic sleep staging methods have been
previously published [10]–[31]. Traditionally, automated meth-
ods have relied on pre-defined rules, carefully selected features
extracted from the signals, and classification algorithms [22]–
[26]. Recently, a few machine-learning-based solutions utilizing
deep learning and artificial neural networks have been presented
[10]–[12], [14], [16]–[21], [27]–[31]. For these solutions, the
classification rules or features of each sleep stage were not
explicitly defined. However, previous studies have generally
relied on heavy preprocessing by either transforming the sig-
nals into 2D images representing the spectral information [19],
[27]–[30] or by reducing the signals into a limited number of
predefined features [10], [30], [31]. Furthermore, deep learning
models developed on research datasets of healthy individuals
have generally suffered from a loss of accuracy when general-
izing into populations with sleep disorders such as OSA [28].
In addition, a few machine learning-based automation attempts
have demonstrated promising outcomes on sleep staging with
a single EEG channel [10], [11], [13]–[16], [18]–[21]. While
some of these have utilized deep learning [10], [11], [14], [16],
[18], [19], [21], they have mostly relied on publicly available
research datasets with a limited number of healthy individuals.
Large clinical and well-balanced datasets have rarely been used,
and the effect of sleep disorders on automatic sleep staging has
not been thoroughly investigated.

We aimed to develop an accurate deep learning-based auto-
matic method for the classification of sleep stages in patients
with suspected OSA. We further aimed to achieve this by uti-
lizing the raw signals without conducting heavy preprocessing.
Furthermore, we aimed to study the effect of OSA severity on
the performance of automatic sleep staging. We hypothesize
that deep learning methods enable accurate sleep staging based
on a single EEG channel for patients with suspected OSA and
that the sleep staging accuracy decreases with increasing OSA
severity.

II.M ETHODS

A. Datasets

1) Sleep-EDF: We first utilized a public dataset, Physionet
Sleep-EDF [32], [33], to allow comparison of the proposed deep
learning-based approach with previous state-of-the-art methods.
We utilized the version 2 of the expanded Sleep-EDF dataset
released in March 2018. The dataset comprises 153 PSGs of
37 males and 41 females from a study investigating the effects
of age on sleep in a healthy population (Sleep Cassette). We
utilized the Fpz-Cz EEG signal for a single-channel input and
combined it with a single horizontal EOG signal for two-channel
input. Both signals were sampled with a 100 Hz frequency. No
preprocessing was implemented on the signals. EMG recording
was left out of this study due to its lower sampling frequency.

The sleep stages were originally scored according to the
Rechtschaffen and Kales manual [34] into following stages:
wake, N1, N2, N3, N4, REM, M (movement), and ‘?’ (not
scored). We combined the stages N3 and N4 into a single sleep
stage to comply with the AASM guidelines [2]. Furthermore,
the stages M and ‘?’ were excluded from the study. The PSG
recordings included long periods of wake in the beginning and
end of the recording. Similarly to previous studies [11], [18], we
only included 30 minutes of the wake before and after the sleep
to obtain more realistic results and to enable comparison.

With the Sleep-EDF dataset, we conducted 10-fold cross-
validation to assess the performance of the network, meaning
that with each fold, 90% of the population was used for training
and 10% as an independent test set. Furthermore, 10% of the
training set was further used as the validation set during each
fold. This was done to avoid overfitting during training, to choose
an optimal model, and to keep the test set separate during
each fold. 10-fold cross-validation was chosen over a single
split to training, validation, and test set due to relatively small
dataset and to enable comparison with the previous studies [11],
[17]–[21].

2) Clinical Dataset: The clinical dataset utilized in this study
consists of 933 consecutive diagnostic overnight polysomno-
graphies (PSG) of patients with clinical suspicion of OSA. Out
of these, 891 individuals had successful recordings of all the
required signals together with complete sleep stage scorings
and were thus included in this study. The PSGs were conducted
at the Princess Alexandra Hospital, Brisbane, Australia during
2015–2017 and recorded with the Compumedics Grael acquisi-
tion system (Compumedics, Abbotsford, Australia). The sleep
stages were initially scored manually by multiple experienced
scorers who participate regularly in intra- and inter-laboratory
scoring concordance activities. Scoring was conducted based on
the AASM rules [2] and the prevailing clinical practice of the
Princess Alexandra Hospital. Ethical permissions for the data
collection and processing were obtained from The Institutional
Human Research Ethics Committee of the Princess Alexandra
Hospital (HREC/16/QPAH/021 and LNR/2019/QMS/54313).

From the recorded PSGs, EEG (derivation F4-M1) was used
for single-channel input and it was complemented with EOG
(derivation E1-M2) for two-channel input. EMG was not in-
cluded to enable comparison with the public dataset. The signals
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TABLEI
DEMOGRAPHIC INFORMATIONOFTHE CLINICAL DATASET(n = 891)

N1, N2, N3, and REM mean the percentage of the sleep stage and NREM the percentage
of non-REM sleep from total sleep time. Sleep efficiency means the percentage of sleep
from total recording time.

were recorded with 1024 Hz sampling frequency and were
downsampled to 64 Hz to reduce the computational load. No
additional preprocessing was applied. The frontal EEG channel
was selected due to its simple measurement setup. The dataset
was split into three individual sets: a training set, a validation
set, and a test set. The training set comprised 717 whole night
recordings (80%), and the validation and test sets comprised 87
recordings (10%) each.

Out of the 891 studied individuals, 493 were males and
398 females. The patients were mostly middle-aged and obese.
According to the current severity classification of OSA, based on
apnea-hypopnea index (AHI) [35], 152 individuals had no OSA
(5 < AHI), 278 suffered from mild OSA (5 ≤ AHI < 15), 208
from moderate OSA (15 ≤ AHI < 30), and 254 had severe OSA
(AHI ≥ 30). Furthermore, 142 individuals were smokers, 197
suffered from diabetes, 368 had hypertension, 96 had cardiac
arrhythmia, 22 had cardiac failure, and 41 had suffered a stroke.
Table I shows the medians and interquartile ranges for sleep
parameters and demographic information.

3) OSA Severity: The effect of OSA severity on the per-
formance of the automatic sleep staging model was assessed
by training and evaluating the model separately on each OSA
severity group (no OSA, mild, moderate, and severe OSA)
of the clinical dataset described above. In this phase, only a
single frontal EEG channel (F4-M1) was used, and as with the
Sleep-EDF dataset, the performance was evaluated using 10-
fold cross-validation. The 10-fold cross-validation was chosen
due to reduced size of the dataset compared to the complete
clinical dataset, and to get more comprehensive and comparable
results over all the severity groups. Table II presents the number
of 30-second epochs of each sleep stage in all the utilized
datasets.

B. Neural Network Architecture

The estimation of the sleep stages (wake, N1, N2, N3, and
REM) was conducted with a combined convolutional network

(CNN) and recurrent neural network (RNN) trained in an end-
to-end manner. The CNN aspect of the network was used to
learn the characteristic features typical of each sleep stage,
while the RNN considered the temporal distribution of the
sleep stages overnight. The combined CNN and RNN structure
was in essence similar to the architecture presented earlier by
Supratak et al. [11]. However, sleep staging was conducted
as a sequence-to-sequence classification problem, previously
proposed by Phan et al. [29]. The network architecture was
identical for the two-channel input and the single-channel input;
the only difference was in the input dimension. The network
was implemented in Python 3.6 using Keras API 2.2.4 with
TensorFlow (version 1.13) backend. The training was conducted
on a server with 32-core AMD Ryzen Threadripper 2990WX,
128 GB RAM and NVIDIA GeForce RTX 2080.

The CNN comprised six 1D convolutions each followed by
batch normalization and a rectified linear unit (ReLU) activation,
two max-pooling layers, and a global average pooling layer
(Fig. 1). The max-pooling layers were situated after the first two
1D convolutions and after the two following 1D convolutions.
The global average pooling layer followed the last two 1D
convolutions. The kernel size of the first 1D convolution was 21
and the stride size was 5. The second 1D convolution had a kernel
size of 21 and stride size of 1. The number of convolutional filters
equaled the sampling frequency (64 Hz for the clinical dataset,
100 Hz for Sleep-EDF) of the used dataset in the first two 1D
convolutions. The remaining four 1D convolutions had a kernel
size of 5 with a stride size of 1. The number of convolutional
filters was two times the sampling frequency for the third and
fourth 1D convolution and four times the frequency for the fifth
and sixth 1D convolution.

The complete network comprised a time distributed layer of
the complete CNN structure, a gaussian dropout layer and a
bidirectional long short-term memory (LSTM) layer followed
by time distributed dense layer with softmax activation (Fig. 1).
The number of units in the bidirectional LSTM was 4 times
the sampling frequency. The LSTM utilized a tanh activation
function and a dropout rate of 0.3. In the recurrent step, a
hard sigmoid activation and a dropout rate of 0.5 were used.
The last layer of the network comprised a dense layer with
softmax activation producing the output sequence of sleep stage
probabilities.

The model was trained with sequences of hundred 30-second
epochs. An overlap of 75% was used when forming the se-
quences in the training set to increase its size fourfold. No
overlap was used in the validation set or the test set. The model
was trained with categorical cross-entropy as the loss function
and an Adam optimizer with warm restarts [36] using a learning
rate range of 0.001 to 0.00001. This learning rate range was
optimized with a learning rate finder [37]. The model was
validated with the validation set after each training cycle i.e.,
after the entire training set was passed through the network.
The model was trained for a maximum of 200 training cycles
or until the value of the loss function in the validation set no
longer decreased during 20 consecutive training cycles The per-
formance of the model was then assessed using in an independent
test set.
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TABLEII
THE NUMBEROF 30-SECOND EPOCHSOF EACH SLEEP STAGEINTHE SLEEP-EDFD ATASET, CLINICAL DATASET, AND AMONGTHE GROUPS WITH

DIFFERENT OSAS EVERITY

Fig.1. Thearchitectureofthecombinedconvolutionalneuralnetwork
(CNN)andrecurrentneuralnetwork(RNN).Theparametersofthe
1Dconvolutions(Conv1D)aregivenas(numberoffilters,kernelsize,
stridesize)andas(poolsize,stridesize)forthemax-pooling.Fsis
thesamplingfrequency.Forthelongshort-termmemory(LSTM)and
denselayer(Softmax)thenumberofunitsisgiven.Therateisgiven
forthedropouts.Thedropoutlayerswereonlyactiveduringtraining.
Sequencesofhundred30-secondepochsoftheutilizedsignalswere
usedasaninput,andthemodelproducedasequenceofsoftmaxvalues
representingtheprobabilitiesofeachsleepstageforeachepoch.

C. Interpretation of the Results

The accuracies were calculated in an epoch-by-epoch manner.
Moreover, the inter-rater agreement between manual and auto-
matic sleep staging was evaluated using Cohen’s kappa coeffi-

cient (κ) [38] and the sensitivity and specificity of differentiating
sleep from wake sleep were calculated.

III.R ESULTS

A. Sleep-EDF

During the 10-fold cross-validation, the model achieved
89.8% training accuracy, 83.0% validation accuracy, and 83.9%
testing accuracy with the two-channel input comprising single
EEG and EOG channels. These accuracies corresponded to
kappa values of 0.86, 0.77, and 0.78 in the training, validation,
and test sets, respectively. Based on the guidelines by Landis and
Koch [39], the kappa values indicate almost perfect agreement
between manual and automatic sleep staging in the training set,
and substantial agreement in the validation and test sets. In the
test set, sleep was identified with 96.2% sensitivity and 93.7%
specificity. For the individual sleep stages, the accuracy was
93.7% for wake, 87.3% for N2, 78.0% for N3, and 85.4% for
REM in the test sets, Fig. 2A. The lowest concordance was seen
with N1 (45.1%).

With the single EEG channel, the obtained accuracies were
89.2%, 82.8%, and 83.7% in training, validation, and test sets,
respectively. These correspond to kappa values of 0.85, 0.77,
0.77, respectively, indicating almost perfect or substantial agree-
ment. In the test set, sleep was identified with 96.0% sensitivity
and 93.4% specificity. Wake was identified with 93.4%, N1
with 43.4%, N2 with 87.3%, N3 with 78.7%, and REM with
85.4% accuracy (Fig. 2B). The obtained accuracies and kappa
values with single and two-channel input, alongside previous
state-of-the-art results, are presented in Table III.

B. Clinical Dataset

In the clinical dataset with the F4-M1 EEG and E1-M2
EOG channels, the model achieved 85.5% training accuracy
and 83.8% validation accuracy. In the independent test set, the
accuracy was 83.8%. These accuracies corresponded to Cohen’s
kappa values of 0.80, 0.78, and 0.78, respectively, indicating
substantial agreement. Furthermore, the sensitivity of identify-
ing sleep was 95.9% with 89.4% specificity in the test set. For
individual sleep stages, the accuracy was 89.4% for wake, 87.2%
for N2, 79.8% for N3 and 91.4% for REM in the test set (Fig. 3A).
The lowest concordance between manual and automatic sleep
staging was obtained in N1 with an accuracy of 46.9%.

With the single frontal EEG channel, the accuracies were
86.3%, 83.4%, and 82.9% in the training, validation and test
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Fig.2. NormalizedconfusionmatricesoftheclassificationaccuraciesfromSleep-EDFwith (A) two-channelinput(Fpz-CzEEGandhorizontal
EOG)and (B) singleEEGchannel(Fpz-Cz)input.

Fig.3. Normalizedconfusionmatricesoftheclassificationaccuraciesfromtheclinicaldatasetwith (A) two-channelinput(F4-M1EEGandE1-M2
EOG)and (B) singleEEGchannel(F4-M1)input.

sets, respectively. These accuracies corresponded to kappa
values of 0.82, 0.78, and 0.77. In the test set, the sensitivity for
identifying sleep was 95.6% with 89.8% specificity. The N1
sleep stage was the most challenging to identify (classification
accuracy of 46.0%). In contrast, wake was identified with
89.8% accuracy, N2 with 86.5%, N3 with 75.4%, and REM
with 90.8% accuracy (Fig. 3B).

C. OSA Severity

When comparing the OSA severity groups, the accuracies
and kappa values were lowest for patients with severe OSA
(Table IV). The accuracy increased with decreasing OSA sever-
ity and were the highest for individuals without OSA. Similar
behavior was perceived in the individual sleep stages, with the

exception of N1 sleep which was most accurately classified for
severe OSA patients (Fig. 4).

IV.D ISCUSSION

In this study, we developed a deep learning-based method for
automatic classification of sleep stages from raw EEG and EOG
signals using both a large clinical dataset (n = 891) comprising
patients with suspected OSA and a publicly available dataset of
healthy individuals (n = 153). Sleep staging was implemented
using both two-channel input and single-channel input. Fur-
thermore, we also studied the effect of OSA severity on the
performance of automatic sleep staging. Overall, the automatic
sleep staging method achieved high accuracies: 83.9% (κ =
0.78) and 83.6% (κ = 0.77) with single and two-channel inputs,
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Fig.4. NormalizedconfusionmatricesoftheclassificationaccuracieswithasingleEEGchannel(F4-M1)inindividuals (A) withnoOSA, (B) with
mildOSA, (C) withmoderateOSA,and (D) withsevereOSA.

respectively, in the public dataset, and almost correspondingly
82.9% (κ = 0.78) and 83.8% (κ = 0.77) in the clinical dataset.
The accuracy of the sleep staging decreased with increasing OSA
severity with the accuracy being the highest for individuals with-
out OSA and lowest with individuals having severe OSA. Based
on the obtained results, deep learning could enable accurate sleep
staging with a single easily measurable frontal EEG channel
with practically the same accuracy as with the additional EOG
channel. Overall, the reliability of these automatic sleep staging
approaches was comparable with the reliability of manual sleep
scoring [4]–[9].

The developed deep learning model compared favorably to
previous studies based on the publicly available Sleep-EDF
dataset [32], [33]. Our method slightly surpassed the perfor-
mance of previously published methods (Table III). Previ-
ously, Mousavi et al. have utilized the updated Sleep-EDF
dataset with 153 recordings and included only 30 minutes of

TABLEIII
PERFORMANCE COMPARISON

Only studies utilizing the sleep cassette dataset of the Sleep-EDF, conducting cross-
validation with an independent test set, and having truncated the excess wake periods
from the recordings are included.



KORKALAINEN et al.:ACCURATEDEEPLEARNING-BASEDSLEEPSTAGINGINACLINICALPOPULATION7

TABLEIV
PERFORMANCEOFTHE DEEP LEARNING-BASED SLEEP STAGINGIN OBSTRUCTIVE SLEEP APNEA SEVERITY GROUPS

wake before and after sleep achieving an accuracy of 80.03%
(κ = 0.73) with a single EEG channel [18]. In comparison, we
achieved a single-channel accuracy of 83.7% (κ = 0.77) with
the same dataset and identically truncated signals. Other studies
based on state-of-the-art methods have been conducted with the
smaller Sleep-EDF dataset with only 39 recordings [11], [17],
[19]–[21] and thus direct comparison is difficult. However, it
is noteworthy that Mousavi et al. compared the performance
of their sleep staging method in both the smaller and updated
datasets and achieved significantly higher accuracy (84.26%
vs. 80.03%) in the smaller dataset [18]. This indicates that
accurate sleep staging may be easier in the smaller dataset when
compared to the larger, updated dataset used in the present study.
Furthermore, direct comparison with previous studies is difficult
due to non-standardized use of the database. The recordings in
the database contain excessive wake periods before and after
sleep. Inclusion of the excess wake periods to the automatic
sleep staging can lead to overly optimistic results. Therefore,
we only compared our results to studies truncating the excess
amount of wake either by using only 30 minutes of wake before
and after sleep [11], [18] or by only using the sleep [19], [20],
[21]. Furthermore, the results cannot be compared to studies not
using an independent test set to assess the performance, as these
results could be distorted by overfitting.

The PSGs collected from suspected OSA patients have been
problematic for previous automatic sleep staging approaches and
even the reliability of manual scoring is known to be lower than
with healthy individuals [8], [9], [28]. This is most likely due to
a fragmented sleep structure and an increase in the amount of N1
sleep stage, which are typical for OSA patients [9]. In the present
study, the sleep staging accuracies decreased with increasing
OSA severity, with an accuracy of 84.5% for individuals without
OSA and 76.5% for patients with severe OSA. Wake and N1
sleep comprised a larger portion of the recording whereas N2,
N3, and REM comprised a smaller portion of the recording for
patients with severe OSA when compared to the other patient
groups (Table II). Especially N1 comprised a significantly larger
portion (15%) of the recordings in the severe OSA group com-
pared to the other groups (6–9%). This supports the idea that
fragmented sleep structure caused by OSA impairs the accuracy
and reliability of sleep staging. However, it is noteworthy that
the accuracy of scoring N1 was 47% for patients with severe
OSA (Fig. 4D) while it was only 28% for individuals without
OSA (Fig. 4A). This increase in accuracy is likely due to a larger
amount of N1 sleep epochs and transitions between wake and
N1 available during the training of the deep learning model.
Furthermore, it is possible that manually identifying the N1

sleep of an individual patient becomes more reliable when more
N1 sleep and especially more transitions between wake and N1
are available. This could improve the automatic scoring of N1
in addition to the accuracy increasing simply due to the larger
training material. However, the N1 accuracy remained the lowest
amongst all sleep stages and the accuracy of the other stages
decreased for severe OSA. Thus, the increase in N1 accuracy
was insufficient to compensate for the reduction in total accuracy
with increasing OSA severity.

Implementation of automatic sleep staging system in a clinical
setting could provide significant benefits over the prevailing
practice. Currently, the manual sleep staging lacks sufficient
inter-rater reliability, as perceived from numerous studies [4]–
[9]. It could be argued that since our deep learning-based sleep
staging method was trained with manual scorings, it’s accuracy
cannot surpass human scorers. However, the developed auto-
matic method may produce a consensus over multiple scorers
and thus minimize the variability. The developed automatic sleep
staging method did not learn only from a single scorer as the clin-
ical PSGs were scored by multiple sleep technicians potentially
differing in their scoring preferences and traditions. Thus, the
optimal solution is not to mimic a single scorer but rather classify
the stages as similarly as possible to the majority of the scorers.
Furthermore, after training, the automatic method always scores
the sleep stages similarly regardless of the situation. This can be
a major advantage over a manual scorer, as the automatic scoring
does not depend on factors such as human error, vigilance level,
or the current scoring environment.

In addition to high variability, manual sleep staging is highly
time-consuming and requires trained specialists for a rather
repetitive task. The sleep staging of a single patient could be
performed in less than a second with the proposed automatic
sleep staging method, whereas the manual scoring can take up
to hours even for experienced scorers. Although the automatic
sleep staging method is reliable for suspected OSA patients, the
reliability of sleep stage classification of individuals with other
sleep disorders remains to be studied.

Accurate sleep staging with a single EEG channel may present
opportunities for further development and application of vari-
ous ambulatory EEG and PSG acquisition systems [40], [41].
Currently, conducting PSG is expensive and requires trained
specialists. Thus, cheaper ambulatory recordings have been
developed and shown to be accurate for the diagnosis of OSA
[3]. Ambulatory recordings are even the preferred diagnostic
method in some healthcare systems [42], [43]. However, the
major disadvantage of ambulatory recordings is often the lack
of EEG recording, preventing identification of sleep stages and
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resulting in crude approximations of the total sleep time from
other signals. Thus, ambulatory EEG recording based on a single
frontal channel could enhance the accuracy of the ambula-
tory recordings whilst ensuring simplicity and cost-efficiency.
However, further studies are warranted to assess and verify
the performance of the developed sleep staging method when
applied together with an ambulatory recording device.

The most significant limitation of the developed deep
learning-based sleep staging method is the scoring of N1
sleep stage. With both the two-channel and single-channel ap-
proaches, the agreement with the manual scoring of stage N1 was
the lowest of all sleep stages with a variation of 28–47% between
the public and clinical datasets and depending on the severity of
OSA. However, N1 is the most difficult sleep stage to identify
even for experienced manual scorers [7], [8]. The agreement
in N1 we achieved with the automatic sleep staging method
is, however, comparable to the inter-rater agreement between
manual scorers, which is between 0.19 and 0.46 [4]–[6]. Thus,
the limited accuracy of scoring N1 sleep stage may not be due
to the developed sleep staging method, but rather in the scoring
definitions of N1 resulting in disagreement between experienced
manual scorers.

V.C ONCLUSION

The proposed deep learning-based automatic method enables
reliable, fast, and accurate sleep staging for suspected OSA
patients. The accuracy of the sleep staging decreases with in-
creasing OSA severity but with the utilized large clinical dataset,
the sleep staging can be conducted for patients suffering from
OSA with almost comparable accuracy to individuals without
OSA. Practically, automatic sleep staging can be performed
as accurately using either a combination of single EEG and
EOG signals or using a single frontal EEG channel. The single-
channel approach could enable a cost-efficient, simple, and
accurate sleep staging in OSA diagnostics.
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Abstract
Study Objectives: Accurate identification of sleep stages is essential in the diagnosis of sleep disorders (e.g. obstructive sleep apnea [OSA]) 

but relies on labor-intensive electroencephalogram (EEG)-based manual scoring. Furthermore, long-term assessment of sleep relies on 

actigraphy differentiating only between wake and sleep periods without identifying specific sleep stages and having low reliability in 

identifying wake periods after sleep onset. To address these issues, we aimed to develop an automatic method for identifying the sleep stages 

from the photoplethysmogram (PPG) signal obtained with a simple finger pulse oximeter.

Methods: PPG signals from the diagnostic polysomnographies of susptected OSA patients (n = 894) were utilized to develop a combined 

convolutional and recurrent neural network. The deep learning model was trained individually for three-stage (wake/NREM/REM), four-stage 

(wake/N1+N2/N3/REM), and five-stage (wake/N1/N2/N3/REM) classification of sleep.

Results: The three-stage model achieved an epoch-by-epoch accuracy of 80.1% with Cohen’s κ of 0.65. The four- and five-stage models 

achieved 68.5% (κ = 0.54), and 64.1% (κ = 0.51) accuracies, respectively. With the five-stage model, the total sleep time was underestimated 

with a mean bias error (SD) of of 7.5 (55.2) minutes.

Conclusion: The PPG-based deep learning model enabled accurate estimation of sleep time and differentiation between sleep stages with a 

moderate agreement to manual EEG-based scoring. As PPG is already included in ambulatory polygraphic recordings, applying the PPG-based 

sleep staging could improve their diagnostic value by enabling simple, low-cost, and reliable monitoring of sleep and help assess otherwise 

overlooked conditions such as REM-related OSA.

Key words:  deep learning; photoplethysmogram; obstructive sleep apnea; recurrent neural networks; sleep staging

Statement of Significance
Sleep staging is the cornerstone of diagnosing sleep disorders. However, the diagnosis of obstructive sleep apnea is increasingly reliant on home-

based recordings without the ability for sleep staging due to the lack of EEG recording. This hinders the ability to assess sleep architecture, with 

total sleep time having to be manually estimated from other signals. This leads to large errors in diagnostic parameters that rely on the accurate 

determination of sleep time. We developed a novel, deep learning-based sleep staging method relying only on photoplethysmogram measured 

with a finger pulse oximeter. The deep learning approach enables differentiation of sleep stages and accurate estimation of total sleep time. This 

could easily enhance the diagnostic yield of home-based recordings and enable cost-efficient, long-term monitoring of sleep.
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Introduction

Characterization of sleep architecture via sleep staging is im-
perative in the diagnosis of various sleep disorders. Currently, as-
sessment of sleep and its quality is also being integrated into an 
increasing number of consumer-grade health technology devices 
developed mainly for self-monitoring purposes. In sleep staging, 
the night is divided into 30-second periods, i.e. epochs, and a 
sleep stage is assigned to every epoch: wakefulness, light sleep 
(stages N1 and N2), deep sleep (stage N3), and rapid eye move-
ment (REM) sleep [1]. These sleep stages are identified by visu-
ally inspecting electroencephalogram (EEG), electrooculogram 
(EOG), and submental electromyogram (EMG) signals. These bio-
electric signals are usually recorded during polysomnography 
(PSG) in addition to cardiorespiratory signals such as respiratory 
airflow, cardiac activity via electrocardiography (ECG), and blood 
oxygen saturation via photoplethysmogram (PPG) obtained with 
a pulse oximeter.

Conducting an in-lab PSG is expensive, requiring the time 
and effort of multiple trained professionals. PSG also has 
a negative impact on sleep quality as the patient is forced to 
sleep in an unfamiliar environment with multiple electrodes 
and sensors attached [2]. This results in worse sleep efficiency, 
shorter sleep duration, and longer sleep latency during an 
in-lab PSG compared with home-based measurements [2, 3]. 
However, home-based measurements do not usually incorp-
orate a recording of EEG. To overcome these limitations, simple 
ambulatory EEG recording devices with good recording quality 
have been introduced [4, 5]. However, despite these recent ad-
vances in ambulatory EEG measurement, actigraphy is still the 
preferred method for assessment of sleep over multiple nights 
due to its simplicity and low costs [6–8]. Actigraphy relies on 
sensitive wrist-worn accelerometers (motion sensors) and es-
timates sleep and wake periods during the night [8]. However, 
actigraphy tends to overestimate sleep time [8, 9] and is unable 
to differentiate between sleep stages. Therefore, new simple and 
cost-effective ambulatory methods and algorithms capable of 
accurately estimating sleep stages with minimal disruption to 
sleep are urgently needed.

With recent advances in machine learning, specifically 
deep learning techniques, automatic sleep staging based on 
EEG has been successfully demonstrated [10–15]. The EEG re-
cording, however, requires multiple electrodes with meticu-
lous placement. Besides changes in the electrical activity of 
the brain, sleep stages are reflected in the autonomic nervous 
system activity. Parasympathetic tone increases when pro-
gressing from wake to deep sleep [16, 17], while REM sleep is 
characterized by increased sympathetic tone [18]. Meanwhile, 
the sympathetic and parasympathetic tone of wake periods 
during the night is between those of NREM and REM sleep [19]. 
It has also been shown that heart rate variability (HRV) dif-
fers between sleep stages [16] and that sleep staging with a 
simpler measurement setup using ECG has the potential to 
differentiate between wake, light sleep, deep sleep, and REM 
sleep [20–22]. The ECG-based approaches have relied on HRV 
features [20] and are often combined with respiratory effort 
[21] or movement features [22]. Besides ECG, HRV features can 
be estimated from information contained in the PPG signal [23, 
24] recorded during most polygraphic and polysomnographic 
recordings. Thus, PPG may provide a simpler solution for 
differentiating between sleep stages.

PPG can be measured with a simple finger pulse oximeter by 
measuring variations in the transmissive absorption of light re-
lated to arterial pulsations. Furthermore, a PPG recording based 
on reflective absorption is included in many consumer-grade 
health technology devices such as smartwatches. Recently, 
there have been attempts to conduct sleep staging using esti-
mated HRV features derived from PPG [25–29]. However, these 
have focused only on estimating features typically calculated 
from ECG and have relied on a simultaneous actigraphy re-
cording. However, changes in PPG have also been linked to in-
creased EEG power density and cortical activity during sleep [30] 
and can be used to determine sympathetic activation [30, 31]. As 
PPG is related to various physiological characteristics and auto-
nomic nervous system activity, we hypothesize that utilization 
of deep learning methodology to analyze PPG signal without any 
prior feature selection enables fast, easily accessible, and ac-
curate sleep staging.

The primary aim of this study was to develop an auto-
matic, deep learning-based sleep staging method utilizing only 
the PPG signal measured with a transmissive finger pulse ox-
imeter during a full PSG. A secondary aim was to achieve this 
in an end-to-end manner without any manual feature extrac-
tion, i.e. by using the complete PPG signals as recorded with the 
pulse oximeter and providing the sleep stages automatically 
for each 30-second segment of the signal. Moreover, we dem-
onstrate the performance of this deep learning approach with 
three-stage (wake/NREM/REM), four-stage (wake/light sleep 
(N1+N2)/deep sleep (N3)/REM), and five-stage (wake/N1/N2/N3/
REM) classification of sleep and its ability to derive commonly 
used sleep parameters (total sleep time and sleep efficiency) in 
a large (n = 894) clinical population of patients suspected with 
obstructive sleep apnea (OSA).

Materials and Methods

Data set

The data set used in this study comprised 933 diagnostic full 
PSGs conducted due to clinical suspicion of OSA at the Princess 
Alexandra Hospital (Brisbane, Australia) using Compumedics 
Grael acquisition system (Compumedics, Abbotsford, Australia) 
between 2015 and 2017. Approval for data collection was obtained 
from the Institutional Human Research Ethics Committee of the 
Princess Alexandra Hospital (HREC/16/QPAH/021 and LNR/2019/
QMS/54313). Complete recordings and successful sleep scorings 
were obtained for 894 patients, yielding the final data set used 
in this study (Table 1).

Sleep stages were initially scored manually by experienced 
scorers participating regularly in intra- and interlaboratory 
scoring concordance activities. A  total of 10 scorers partici-
pated in the scoring of the whole data set, and each recording 
was scored once by a single scorer. In a previous study on the 
interrater reliability at the Princess Alexandra Hospital, the 
mean (SEM) Cohen’s κ of sleep staging was 0.74 (0.02) [32]. As 
for the individual sleep stages, the κ-values were 0.88 (0.03) for 
wake, 0.47 (0.08) for N1, 0.68 (0.03) for N2, 0.60 (0.08) for N3, and 
0.92 (0.01) for REM [32]. The manual sleep staging was conducted 
based on EEG, EOG, and chin EMG signals. The sleep stages, 
arousals, and respiratory events were scored in compliance with 
the prelavent American Academy of Sleep Medicine (AASM) 
guidelines [1].
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We extracted the transmissive photoplethysmogram (PPG) 
signals measured with a finger pulse oximeter (Nonin Xpod 
3011) from the PSGs with Profusion PSG 4 software (Compumedics, 
Abbotsford, Australia) and utilized the complete PPG signals 
without any manual feature selection in the deep learning-based 
sleep staging. The PPG signals were originally recorded with 256 
Hz sampling frequency and were downsampled to 64 Hz in this 
study to reduce the computational load. No further preprocessing 

or any artifact removal was implemented. None of the EEG, EOG, 
or EMG signals were used beyond the initial manual scoring. The 
complete study workflow is illustrated in Figure 1.

The complete data set was randomly split into training (715 
recordings, 80%), validation (90 recordings, 10%), and test (89 re-
cordings, 10%) sets. Due to the randomization, 85% of the pa-
tients in the training set, 78% of the patients in the validation set, 
and 81% of the patients in the test set had OSA (apnea-hypopnea 

Table 1. Demographic and polysomnographic information of the study population

Whole population  
(n = 894)

Training set  
(n = 715)

Validation set  
(n = 90)

Test set  
(n = 89)

 Median (interquartile range)
Age (years) 55.9 (44.7–65.8) 55.8 (44.7–66.0) 56.6 (42.9–66.4) 56.1 (45.3–63.3)
ArI (1/h) 20.7 (13.9–31.4) 21.1 (14.1–32.5) 18.9 (13.2–26.6) 20.5 (13.6–29.5)
AHI (1/h) 15.8 (7.0–32.6) 16.0 (7.4–33.5) 12.3 (5.7–30.2) 16.8 (6.5–33.2)
BMI (kg/m2) 34.4 (29.4–40.4) 34.2 (29.3–40.1) 35.9 (28.6–41.5) 34.8 (31.1–41.2)
N1 (%) 10.9 (6.7–18.8) 11.1 (6.9–19.3) 10.8 (6.0–19.1) 9.7 (5.5–16.2)
N2 (%) 48.3 (41.2–56.2) 48.2 (41.6–56.5) 50.3 (40.3–55.2) 48.8 (38.5–55.6)
N3 (%) 18.3 (9.6–26.8) 18.0 (9.4–26.9) 17.7 (9.4–26.0) 20.4 (11.4–27.8)
NREM (%) 82.9 (77.8–88.1) 83.0 (77.8–88.1) 82.4 (78.5–88.8) 82.4 (77.1–86.4)
REM (%) 17.1 (11.8–22.0) 16.9 (11.8–22.2) 17.5 (11.0–21.4) 17.6 (12.5–22.8)
SE (%) 70.7 (58.1–81.9) 70.7 (57.9–81.7) 69.9 (55.2–83.6) 71.9 (60.1–80.7)
SL (min) 17.5 (9.0–34.5) 17.5 (9.5–35.1) 19.0 (7.0–29.8) 15.0 (9.0–33.5)
TRT (min) 442.3 (409.5–474.0) 442.0 (410.3–474.5) 449.0 (412.4–474.6) 438.0 (403.1–464.5)
TST (min) 308.8 (253.5–359.5) 309.5 (253.0–359.5) 304.0 (249.5–368.6) 304.0 (259.3–347.8)
WASO (min) 102.5 (61.0–149.5) 102.8 (61.0–152.0) 96.0 (60.6–144.4) 100.0 (65.4–135.8)
 n (% of the population)
No OSA 154 (17.2) 117 (16.4) 20 (22.2) 18 (20.2)
Mild OSA 278 (31.1) 224 (31.3) 29 (32.2) 24 (27.0)
Moderate OSA 209 (23.4) 168 (23.5) 17 (18.9) 24 (27.0)
Severe OSA 253 (28.3) 206 (28.8) 23 (25.6) 24 (27.0)
Female 398 (44.5) 320 (44.8) 39 (43.3) 39 (43.8)
Male 496 (55.5) 395 (55.2) 50 (55.6) 51 (57.3)

ArI, arousal index; AHI, apnea-hypopnea index; BMI, body mass index; SE, sleep efficiency; SL, sleep latency; TRT, total recording time; TST, total sleep time; WASO, 

wake after sleep onset. No obstructive sleep apnea (OSA): AHI < 5, mild OSA: 5 ≤ AHI < 15, moderate OSA: 15 ≤ AHI < 30, severe OSA: AHI ≥ 30.

Figure 1. Illustration of the study workflow. The photoplethysmogram (PPG) signals were extracted from clinical polysomnographies (PSG), downsampled, and split 

into three independent sets: training, validation, and test set. These sets were normalized with z-score normalization using the mean and SD of the training set. The 

signals were then used to generate sequences of hundred 30-s PPG epochs and an overlap of 75% was used in the training set. The sequences were then used to train, 

optimize, and test the developed neural network resulting in an automatic sleep staging approach utilizing only PPG signal.
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index ≥ 5). Subsequently, the data sets were normalized using 
z-score normalization. To minimize bias, all the data sets were 
normalized using the mean and SD of the training set. Finally, 
the PPG signals were divided into 30-second epochs corres-
ponding to the timestamps of the manually scored sleep stages.

Neural network architecture

A convolutional neural network (CNN) combined with a recur-
rent neural network (RNN) was implemented for sleep stage 
classification. The classification was conducted individually 
with three different classification systems: (1) wake, NREM 
sleep, and REM sleep; (2) wake, light sleep (N1+N2), deep sleep 
(N3), and REM sleep; and (3) wake, N1, N2, N3, and REM sleep. 
In essence, CNN was utilized to learn the features of each sleep 
stage while the RNN was utilized to consider the temporal dis-
tribution of sleep stages during the night. The combined CNN 
and RNN network was implemented in Python 3.6 using Keras 
API 2.24 with TensorFlow 1.13.1 backend. The implementation of 
the network is presented in Supplementary Material. The net-
work architecture was identical for the three-, four-, and five-
stage classification models.

The CNN consisted of six 1D convolutions, two max-pooling 
layers, and a global average pooling layer (Figure  2). Each 1D 
convolution was followed by batch normalization and rectified 
linear unit activation function. The first 1D convolution had a 
kernel size of 21 with a stride of 5 and the second 1D convolu-
tion had a kernel size of 21 with a stride size of 1. The remaining 
1D convolutions had a kernel size of 5 and a stride size of 1. The 
number of convolutional filters was 64 for the first two convolu-
tions, 128 for the third and fourth convolutions, and 256 for fifth 
and sixth convolutions. The max-pooling layers were included 
after the first two convolutions and before the last two convolu-
tions and had a pool size of 2 with a stride size of 2. The last two 
1D convolutions were followed by a global average pooling layer.

The RNN included a time distributed layer of the complete 
CNN described above. The time distributed CNN layer was fol-
lowed by a gaussian dropout layer with a dropout rate of 0.3 and 
a bidirectional gated recurrent unit (GRU) layer. The GRU layer 
comprised 256 cells with a dropout rate of 0.3 in the forward 
step and 0.5 in the recurrent step. A time distributed dense layer 
with a softmax activation function was included as the final 
layer of the model to produce the output sequence of sleep stage 
probabilities (Figure 2).

The model was trained in an end-to-end manner using 
sequences of hundred 30-second epochs, and the sleep stages 
were estimated for each epoch in the sequences. The dimension 
of a single sequence used as an input to the network was (1, 100, 
1920, 1)  comprising the number of sequences, length of a se-
quence (100 epochs in a single sequence), number of data points 
in a single 30-second epoch with a 64 Hz sampling frequency 
(1920 data points), and the number of channels (1 PPG channel), 
respectively. Overlap of 75% between consecutive sequences 
was applied when forming the sequences in the training set, 
effectively increasing the size of the training data set fourfold. 
This procedure was not applied to the validation and test sets. 
The training set comprised 25 392 sequences, while the valid-
ation and test sets comprised 786 and 784 sequences, respect-
ively. The network training was performed using categorical 
cross-entropy loss function and an Adam optimizer with warm 
restarts [33] and a learning rate range of 0.001–0.00001. The op-
timal range for the learning rate was estimated using learning 

rate finder [34]. The model was validated using the validation 
set after each training cycle, i.e. after the whole training set was 
used for training the model.

The training was conducted until the validation loss no 
longer decreased between consecutive training cycles. The 

Figure 2. Illustration of the architecture of the combined convolutional neural 

network (CNN) and recurrent neural network (RNN). The CNN comprised six 1D 

convolutions (Conv1D), batch normalizations, and rectified linear unit (ReLU) 

activation functions. The parameters of the convolutional layers are given as 

(number of filters, kernel size, stride size) and the parameters of the max-pooling 

layers are given as (pool size, stride size). The CNN was followed by a Gaussian 

dropout layer, bidirectional gated recurrent unit (GRU), and a time distributed 

dense layer with a softmax activation function. The dropout rate is given for the 

dropouts and the number of units is given for the GRU and the final dense layer. 

n is the number of sleep stages in the classification system and varied between 

3, 4, and 5.
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model that achieved the lowest validation loss during all the 
training cycles was considered optimal and was selected for 
further analysis. The performance of this model was evaluated 
using the independent test set.

Statistical analysis

The model performance was evaluated by calculating sleep 
staging accuracies in an epoch-by-epoch manner. Moreover, 
the inter-rater agreement between the manual PSG-based 
scoring and automatic PPG-based scoring was assessed using 
Cohen’s kappa coefficient (κ) [35]. Furthermore, the confusion 
matrices were formed to illustrate the accuracy of each sleep 
stage and additionally the precision and recall values were 
calculated.

To further assess the performance of the model, total sleep 
time, sleep efficiency, and the percentage of sleep stages were 
calculated from the PPG-based sleep staging and compared with 
parameters from the manual PSG-based scorings. Furthermore, 
to study the clinical viability and diagnostic validity of the PPG-
based slep staging, the apnea-hypopnea index (AHI) values de-
rived from the PSGs were compared with those calculated based 
on the PPG-based sleep staging. When calculating the PPG-AHI, 
all the respiratory events occurring during epochs scored as wake 
by the PPG-based sleep staging were discarded and the number 
of remaining events was divided by the PPG-derived total sleep 
time. For further comparison, the AHI from polygraphic record-
ings (PG) was simulated by including all the respiratory events 
and dividing by the total recording time. The statistical signifi-
cance of differences was studied using the Wilcoxon signed-
rank test in Matlab 2018b (The MathWorks, Natick, MA).

Results

Differentiating between wake, NREM sleep, and 
REM sleep

In the three-stage classification of sleep (wake/NREM/REM), 
the deep learning model trained with PPG signals achieved 
an epoch-by-epoch accuracy of 89.0% in the training set 

(n = 715), 79.5% in the validation set (n = 90), and 80.1% in the 
test set (n = 89). The accuracies corresponded to Cohen’s κ-
values of 0.81, 0.63, and 0.65, respectively. For the individual 
sleep stages in the test set, the precision (recall) was 0.79 
(0.72) for wake, 0.81 (0.87) for NREM, and 0.77 (0.70) for REM 
(Figure 3).

Differentiating between wake, light sleep, deep 
sleep, and REM sleep

The model developed for the four-stage classification of sleep 
(wake/N1+N2/N3/REM) achieved an epoch-by-epoch accuracy of 
83.1% in the training set, 67.1% in the validation set, and 68.5% 
in the test set. These corresponded to Cohen’s κ-values of 0.75, 
0.51, and 0.54 in the training, validation, and test sets, respect-
ively. In the test set, the precision (recall) was 0.78 (0.73) for 
wake, 0.64 (0.71) for light sleep, 0.57 (0.52) for deep sleep, and 
0.75 (0.67) for REM (Figure 4).

Differentiating between wake, N1, N2, N3, and 
REM sleep

The five-stage (wake/N1/N2/N3/REM) classification model 
achieved an epoch-by-epoch accuracy of 77.5% in the training 
set, 62.3% in the validation set, and 64.1% in the test set. The 
corresponding Cohen’s κ-values were 0.69, 0.48, and 0.51. The 
precision (recall) was 0.74 (0.78) for wake, 0.34 (0.13) for N1, 0.56 
(0.67) for N2, 0.61 (0.54) for N3, and 0.75 (0.69) for REM (Figure 5). 
Examples of the PPG signals during correctly classified sleep 
stages are presented in Figure 6.

Clinical parameters

Clinical parameters (total sleep time, sleep efficiency, sleep stage 
percentages, and AHI) were calculated from the manual PSG-
based scorings and from the automatic scorings based only on 
the PPG signal separately for each classification model. In the 
independent test set, the mean (SD) total sleep time was 298.4 
minutes (79.8 minutes) based on the manual scoring. The mean 
difference to manual scoring was −12.2 minutes (52.9 minutes) 

Figure 3. Normalized confusion matrix of the PPG-based classification accur-

acies for wake, NREM sleep, and REM sleep in an independent test set of 89 pa-

tients with suspected obstructive sleep apnea.

Figure 4. Normalized confusion matrix of the PPG-based classification accur-

acies for wake, light sleep (N1+N2), deep sleep (N3), and REM sleep in an inde-

pendent test set of 89 patients with suspected obstructive sleep apnea.
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with the three-stage model (p = 0.03), −8.8 minutes (55.5 min-
utes) with the four-stage model (p = 0.06), and 7.5 minutes (55.2 
minutes) with the five-stage model (p = 0.24).

The mean (SD) sleep efficiency based on the manual scoring 
was 68.4% (16.9%). The mean difference was −2.8% (11.3%) with 
the three-stage model (p  =  0.03), −2.0% (12.0%) with the four-
stage model (p  =  0.06), and 1.9% (12.2%) with the five-stage 
model (p = 0.23). Bland–Altman plots for the total sleep time and 
sleep efficiency are shown in Figure 7.

The mean (SD) percentage of wake in the test set was 31.6% 
(16.9%) based on the manual scoring. The difference was 2.7% 
(11.3%) with the three-stage model (p = 0.03), 2.0% (12.0%) with 
the four-stage model (p = 0.06), and −1.9% (12.2%) with the five-
stage model (p = 0.23). Similarly, the percentage of REM was 12.5% 
(6.5%) with manual scoring and the differences were 1.1% (5.7%) 
(p = 0.05), 1.3% (5.9%) (p = 0.08), and 1.1% (5.7%) (p = 0.26) with the 
three-, four-, and five-stage models, respectively. Percentage of 
NREM sleep was 55.9% (13.8%) with manual scoring, and the dif-
ference was −3.8% (11.9%) (p = 0.003) with the three-stage model. 
Light sleep and deep sleep percentages were 41.2% (13.2%) and 
14.7% (11.6%) with manual scoring and the difference was -4.7% 
(14.1%) (p = 0.005) and 1.4% (11.7%) (p = 0.24) with the four-stage 
model, respectively. With the manual scoring, percentages of N1, 
N2, and N3 were 8.6% (6.6%), 32.7% (10.9%), and 14.7% (11.6%), re-
spectively, and the difference was 5.4% (5.7%) for N1 (p < 0.001), 
−6.3% (12.3%) for N2 (p < 0.001), and 1.7% (11.9%) for N3 (p = 0.08) 
with the five-stage model.

Figure 6. Examples of PPG signals during correctly identified sleep stages. In these examples, it can be seen that during wake the PPG signal remains stable, and the 

frequency and amplitude are fairly constant. During N1 sleep, irregular variation in the signal amplitude occurs and the frequency decreases. When progressing to N2 

and further to N3 sleep, the amplitude decreases and low-frequency oscillations in the PPG signal begin to occur. In contrast, REM sleep is highly similar to wake but 

with slightly higher variation in the signal amplitude.

Figure 5. Normalized confusion matrix of the PPG-based classification accur-

acies for wake, N1, N2, N3, and REM sleep in an independent test set of 89 pa-

tients with suspected obstructive sleep apnea.
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The mean (SD) diagnostic AHI calculated from the PSG was 
24.2 (24.3) events/h in the test set. The simulated polygraphic 
AHI was 18.8 (17.5) events/h. With the PPG-based sleep staging, 
the mean AHI was 23.3 (22.5) events/h with the three-stage 
model, 23.1 (22.1) events/h with the four-stage model, and 22.6 
(22.0) events/h with the five-stage model. The mean difference 
(SD) between the PSG-AHI and polygraphic AHI was -5.3 (12.4) 
events/h (p < 0.001). The mean difference between the PSG-
AHI and PPG-AHI was -0.9 (9.0) events/h with the three-stage 
model (p = 0.005), -1.1 (8.5) events/h with the four-stage model 
(p = 0.002), and -1.6 (8.5) events/h with the five-stage model 
(p < 0.001).

Discussion
In this study, we developed deep learning models for the auto-
mated identification of sleep stages from clinical PPG data of 
suspected OSA patients. The PPG-based sleep staging technique 
achieved 80.1% epoch-by-epoch accuracy (κ = 0.65) in three-stage 
classification (wake/NREM/REM), 68.5% (κ=0.54) in four-stage 
classification (wake/N1+N2/N3/REM), and 64.1% (κ = 0.51) in five-
stage classification (wake/N1/N2/N3/REM) of sleep. Based on 
the guidelines of Landis and Koch [36], the agreement between 
manual PSG-based scoring and the developed deep learning-
based scoring based solely on PPG was substantial in three-stage 
classification and moderate in four- and five-stage classification. 
Therefore, utilization of PPG signal together with deep learning 
methods appears to be a highly promising approach and may en-
able sufficiently accurate sleep staging for various applications. 
For example, in OSA diagnostics, the three-stage classification 

might be sufficient to determine the total sleep time and study 
the disease characteristics in REM or NREM sleep.

In contrast to earlier studies, the present study utilized only 
the PPG signal in an end-to-end manner producing an easily ap-
plicable method for automatic sleep staging. Previous studies 
have utilized HRV features estimated from PPG signal for sleep 
staging [25–28]. However, PPG has also been linked to various 
characteristics generally perceived from EEG. For example, vari-
ations in spectral components of EEG during arousals have also 
been perceived in PPG [30]. This supports using the full PPG 
signals for the sleep staging instead of just the estimated HRV 
content.

Previous studies related to PPG-based sleep staging have re-
lied on a relatively small number of healthy individuals (10–152 
participants) [25–28] and have often included actigraphy in add-
ition to PPG [25, 26, 28]. In this study, we utilized recordings of 
894 individuals with a high prevalence of OSA (83% of the popu-
lation). Sleep staging of OSA patients is generally more difficult 
than in healthy population due to fragmented sleep architecture 
and an increased amount of N1 sleep and sleep stage transi-
tions [37]. Nevertheless, the performance of our algorithm was 
at least comparable to previous studies. For example, two-stage 
sleep-wake classification has been previously conducted with 
72.36% [29] and 77% accuracy [28], whereas our model achieved 
an accuracy of 80.1% in three-stage classification (wake/NREM/
REM). Similarly, the Cohen’s κ-value has been between 0.46 and 
0.59 for the three-stage classification [25, 27] and between 0.42 
and 0.52 for the four-stage classification (wake/light sleep/deep 
sleep/REM) [25, 26]. In comparison, we achieved κ-values of 0.65 
and 0.54 for the three- and four-stage classification, respectively. 

Figure 7. Bland–Altman plots for total sleep time (TST, top row) and sleep efficiency (SE, bottom row) from the deep learning models trained to identify three, four, or 

five sleep stages. Values are calculated as the average and difference between the values obtained from manual PSG-based sleep scoring and from the automatic PPG-

based scoring in an independent test set of 89 patients suspected with obstructive sleep apnea.
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This illustrates that the PPG-based sleep staging could be used 
beyond healthy individuals and independently without an 
actigraphy recording.

Accurate sleep monitoring over multiple consecutive nights 
has been difficult due to the lack of comfortable, wearable sensors 
that could be used at home without assistance. Actigraphy has 
been the preferred method for long-term monitoring but is un-
able to differentiate between sleep stages and overestimates 
sleep time whenever the individual is awake and motionless in 
bed [8, 9]. As the PPG recording is comfortable, low cost, and easy 
to use, the current results suggest that the PPG-based sleep sta-
ging could be a reasonable substitute for actigraphy when the 
ability to differentiate between sleep stages is required.

Application of PPG-based sleep monitoring could improve 
the information received from ambulatory PG, not including 
EEG recording. PPG sensors are already integrated into pulse 
oximeters in ambulatory PG devices; however, in current clin-
ical practice, sleep parameters are qualitatively estimated based 
on other measured signals, such as movement and breathing. 
This is possibly the reason for the significant difference in de-
termined sleep time between PG and PSG [38]. For example, in 
a large European cohort of OSA patients, the mean total sleep 
time from PSG was 381.7  min, whereas the estimated sleep 
time from PG was 428.8 minutes [38]. In the present study, the 
mean bias error (SD) in the estimated total sleep time based on 
PPG was only 7.5 (55.2) minutes with the five-stage classifica-
tion. Even though the SD remains relatively large and some out-
liers in predictions still remain (Figure 7), the PPG-based staging 
could provide a way to get a sufficiently accurate estimation of 
total sleep time for most patients. This is an important result 
since, e.g., in OSA diagnostics the most commonly used diag-
nostic parameters depend on the total sleep time. For example, 
the AHI could be determined with a considerably better corres-
pondence to the PSG; the PPG-based AHI differed with only −0.9 
events/h from the standard diagnostic AHI whereas, with the 
simulated PG-AHI the difference was −5.3 events/h.

Furthermore, application of the PPG-based sleep staging and 
reliable differentiation between wake, NREM, and REM sleep 
could assist in detecting REM-related OSA from ambulatory PG. 
When compared with PSG, ambulatory PGs are considerably 
cheaper to conduct, have better availability, and are already the 
preferred diagnostic method in some health care systems [39]. 
Therefore, the application of the PPG-based sleep staging could 
significantly enhance the already widely used ambulatory PGs 
and bring their diagnostic value closer to an in-lab PSG without 
inducing any additional costs. However, further studies are war-
ranted to assess the performance of the PPG-based sleep staging 
on ambulatory recordings and investigate the effect of common 
issues related to ambulatory measurements, such as technical 
problems in data quality, artifacts, and missing sections of the 
signal during the night. Furthermore, additional studies are war-
ranted to validate the method across different pulse oximeter 
types and models.

Besides the potential application of PPG-based sleep staging 
to PG, the method developed in this study could have applica-
tions in various consumer-grade health technology devices. 
Nowadays, reflective PPG sensors are integrated into various 
wearable self-tracking devices, such as activity wristbands and 
smartwatches. Such devices already measure sleep duration 
and quality, but the algorithms implemented in these devices 
for sleep staging are not public and their validity has not been 

thoroughly investigated in a clinical setting [40–43]. In contrast, 
the PPG-based sleep staging method developed in this study 
provides highly promising results in a clinical population of 
patients referred for PSG due to the suspicion of OSA. Thus, it 
could enable sleep staging beyond the healthy population, en-
able simple long-term monitoring of sleep quality, and assist in 
identifying sleep disorders, even with consumer-grade devices. 
However, the reflective PPG differs from the transmissive meas-
urement giving rise to additional challenges. Therefore, further 
studies are needed to assess the performance of the developed 
algorithm in analyzing data from reflective PPG sensors com-
monly integrated into consumer-grade wearable devices.

The low agreement with manual PSG scoring of N1 is a limi-
tation of the present PPG-based sleep staging. The agreement be-
tween manual and PPG-based scoring of the N1 sleep stage was 
only 13%. The mean percentage of N1 was 8.6% of the recording 
from the PSG-based scoring while the mean difference was 5.4% 
with the PPG-based scoring. However, the N1 sleep stage also 
has a low agreement between manual scorers; the agreement 
is the lowest of all sleep stages and the κ-value is only between 
0.19 and 0.46 [44–46]. This could be the main reason for the low 
N1 accuracy in the presented PPG-based sleep staging. The N1 
sleep stage was mostly misidentified as N2 by the presented 
PPG-based sleep staging approach. Thus, it is likely that the low 
N1 agreement is also partially due to relatively small differences 
in the PPG signals between N1 and N2 sleep stages. This further 
raises the question of whether differentiating between N1 and 
N2, the two stages comprising light sleep, is always required for 
all different applications of sleep staging. Furthermore, the cur-
rent EEG, EOG, and EMG-based sleep staging suffers from arbi-
trary rules not fully based on physiological factors. Mainly, the 
use of 30-second epochs excludes all the information on the 
sleep microstructure. Therefore, the agreement with PSG-based 
scoring does not fully capture the feasibility of the PPG sleep sta-
ging; rather, future studies are warranted on how the PPG-based 
sleep staging captures the physiological changes during the 
night and reflects the outcomes such as perceived sleep quality 
or daytime vigilance.

In conclusion, as PPG is easy to record, it enables cost-effective 
and simple sleep monitoring without disrupting natural sleep 
patterns. Therefore, the PPG-based automatic sleep staging has 
great potential to supplement the widely used ambulatory PGs, 
which already include PPG measurement. This could enhance 
their diagnostic yield by enabling cost-efficient, simple, and reli-
able long-term monitoring of sleep and by enabling the assess-
ment of otherwise overlooked conditions such as REM-related 
OSA.

Supplementary Material
Supplementary data are available at SLEEP online.
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1 Supplementary material

In this study, we developed a combined convolutional and recurrent neural network to auto-

matically identify sleep stages from a photoplethysmogram signal obtained with a finger pulse

oximeter. The complete neural network structure includes a time distributed layer of the con-

volutional neural network (CNN) which is then followed by a dropout layer and a bidirectional

gated recurrent unit (GRU) layer. The neural network was trained using sequences of hundred

30-second epochs of the PPG signals downsampled to 64 Hz and overlap of 75% was used be-

tween consecutive sequences in the training set. The sequence forming protocol was repeated

until the complete PPG signals were utilized.

The following sections include the Python implementation of the models using Keras and an

example of how the model can be formed and compiled with the functions.

1.1 Python functions of the neural network

Below, the functions used to form the neural network are presented.

# The combined convo l u t i ona l and recurren t neura l network deve loped in the s tudy :

# H Korkalainen , J Aakko e t a l . ”Deep l e a rn ing enab l e s s l e e p s t a g i n g from

# photoplethysmogram fo r p a t i e n t s wi th suspec t ed s l e e p apnea”

# Contact in format ion : henr i . korka la inen@uef . f i

from keras.layers import Input, Conv1D, BatchNormalization
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from keras.layers import Activation , MaxPooling1D , GlobalAveragePooling1D

from keras.layers import Dense, GaussianDropout , TimeDistributed

from keras.layers import Bidirectional , GRU

from keras.models import Model

def build base cnn model(input size = 1920, input channels = 1,

init conv kernel size = 21, ksize = 5,

conv stride first = 5,

conv stride rest = 1,

maxpool size = 2, maxpool stride = 2,

act function = "relu", fs =64):

# in p u t s i z e = l en g t h o f a s i n g l e PPG−epoch

# inpu t channe l s = number o f PPG channe l s

# i n i t c o n v k e r n e l s i z e = ke rne l s i z e f o r the f i r s t convo lu t i on l a y e r

# k s i z e = ke rne l s i z e f o r the r e s t c onvo l u t i ona l l a y e r s

# c o n v s t r i d e f i r s t = s t r i d e f o r the f i r s t convo lu t i on l a y e r

# c o n v s t r i d e r e s t = s t r i d e f o r the remaining convo lu t i on l a y e r s

# maxpoo l s i z e = poo l s i z e f o r the max−poo l ing

# maxpoo l s t r i d e = s t r i d e s i z e f o r the max−poo l ing

# ac t f un c t i o n = a c t i v a t i o n func t i on

# f s = the sampling f requency

input1 = Input(shape = (input size , input channels), name = "input")

x = Conv1D(fs, kernel size = init conv kernel size ,

strides = conv stride first)(input1)

x = BatchNormalization()(x)

x = Activation(act function)(x)

x = Conv1D(fs, kernel size = init conv kernel size ,

strides = conv stride rest)(x)

x = BatchNormalization()(x)

x = Activation(act function)(x)

x = MaxPooling1D(pool size = maxpool size , strides = maxpool stride)(x)

x = Conv1D(2∗fs, kernel size = ksize, strides = conv stride rest)(x)
x = BatchNormalization()(x)

x = Activation(act function)(x)

x = Conv1D(2∗fs, kernel size = ksize, strides = conv stride rest)(x)
x = BatchNormalization()(x)

x = Activation(act function)(x)

x = MaxPooling1D(pool size = maxpool size , strides = maxpool stride)(x)

x = Conv1D(4∗fs, kernel size = ksize, strides = conv stride rest)(x)
x = BatchNormalization()(x)

x = Activation(act function)(x)

x = Conv1D(4∗fs, kernel size = ksize, strides = conv stride rest)(x)
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x = BatchNormalization()(x)

x = Activation(act function)(x)

out = GlobalAveragePooling1D()(x)

model = Model(inputs = input1, outputs = out)

return model

def build cnn to rnn model(input size = 1920, input channels = 1, n categories = 3,

seq length = None,init conv kernel size = 21, ksize = 5,

conv stride first = 5, conv stride rest = 1,

maxpool size = 2, maxpool stride = 2,

gru units multiplier = 4,rdo = 0.5, do = 0.3, gdo = 0.3,

act function = "relu", fs = 64):

# in p u t s i z e = l en g t h o f a s i n g l e PPG−epoch

# inpu t channe l s = number o f PPG channe l s

# n ca t e g o r i e s = number o f d i f f e r e n t s l e e p s t a g e s

# s e q l e n g t h = number o f epochs in the input .

# With s e q l e n g t h = ’None ’ the model accep t s any sequence l en g t h

# i n i t c o n v k e r n e l s i z e = ke rne l s i z e f o r the f i r s t convo lu t i on l a y e r

# k s i z e = ke rne l s i z e f o r the r e s t c onvo l u t i ona l l a y e r s

# c o n v s t r i d e f i r s t = s t r i d e f o r the f i r s t convo lu t i on l a y e r

# c o n v s t r i d e r e s t = s t r i d e f o r the remaining convo lu t i on l a y e r s

# maxpoo l s i z e = poo l s i z e f o r the max−poo l ing

# maxpoo l s t r i d e = s t r i d e s i z e f o r the max−poo l ing

# g r u u n i t s mu l t i p l i e r ∗ f s = number o f GRU un i t s

# rdo = recur ren t dropout s i z e

# do = ( forward ) drop out s i z e

# gdo = Gaussian dropout s i z e

# ac t f un c t i o n = a c t i v a t i o n func t i on

# f s = the sampling f requency

seq input = Input(shape=(seq length , input size , input channels))

base model = build base cnn model(input size = input size ,

input channels = input channels ,

init conv kernel size = init conv kernel size ,

ksize = ksize,

conv stride first = conv stride first ,

conv stride rest = conv stride rest ,

maxpool size = maxpool size ,

maxpool stride = maxpool stride ,

act function=act function ,

fs = fs)

encoded sequence = TimeDistributed(base model)(seq input)

encoded sequence = GaussianDropout(gdo)(encoded sequence)

encoded sequence = Bidirectional(GRU(gru units multiplier∗fs,
return sequences = True,
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recurrent dropout = rdo,

dropout = do))(encoded sequence)

out = TimeDistributed(Dense(n categories , activation = "softmax"))(encoded sequence)

model = Model(inputs = seq input , outputs = out)

return model

1.2 Compiling the neural network

Below, an example of how the model can be formed and compiled is presented. The input
must be a 4D tensor with shape (number of sequences, length of a single sequence, sampling
frequency * 30 s, number of channels).

cnnrnn = build cnn to rnn model(input channels = n channels ,

n categories = n stages , act function = "relu",

do = 0.3, rdo = 0.5, gdo = 0.3)

cnnrnn.compile(loss = ’categorical crossentropy’, optimizer =

’adam’, metrics = [’accuracy’])
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