
uef.fi

PUBLICATIONS OF 
THE UNIVERSITY OF EASTERN FINLAND

Dissertations in Forestry and Natural Sciences

ISBN 978-952-61-3160-3
ISSN 1798-5668

Dissertations in Forestry and 
Natural Sciences

D
IS

S
E

R
T

A
T

IO
N

S
  |  M

IT
H

IL
E

S
H

 P
R

A
K

A
S

H
  |  O

P
T

IM
IZ

A
T

IO
N

 O
F

 M
U

L
T

IV
A

R
IA

T
E

 R
E

G
R

E
S

S
IO

N
 T

E
C

H
N

IQ
U

E
S

...  |  N
o

 349  

MITHILESH PRAKASH

OPTIMIZATION OF MULTIVARIATE REGRESSION  
TECHNIQUES FOR NEAR-INFRARED SPECTROSCOPIC  

CHARACTERIZATION OF ARTICULAR CARTILAGE

PUBLICATIONS OF 
THE UNIVERSITY OF EASTERN FINLAND

 
The studies in this thesis explore and optimize 

regression techniques for near-infrared 
spectroscopy (NIRS)-based characterization 

of articular cartilage integrity. The limitations 
of conventional regression techniques were 
addressed via the development of a hybrid 

regression technique to aid the arthroscopic 
application of NIRS, thus paving the way for 
clinical applications in joint tissue diagnosis.

MITHILESH PRAKASH

31196684_UEF_Vaitoskirja_NO_349_Mithilesh_Prakash_Lumet_cover_19_08_23.indd   1 23/08/2019   11.20





PUBLICATIONS OF THE UNIVERSITY OF EASTERN FINLAND
DISSERTATIONS IN FORESTRY AND NATURAL SCIENCES

N:o 349

Mithilesh Prakash

OPTIMIZATION OF MULTIVARIATE
REGRESSION TECHNIQUES FOR

NEAR-INFRARED SPECTROSCOPIC
CHARACTERIZATION OF ARTICULAR

CARTILAGE

ACADEMIC DISSERTATION

To be presented by the permission of the Faculty of Science and Forestry for public
examination in the Auditorium SN201 at the University of Eastern Finland, Kuopio,
on 20th September 2019, at 12 o’clock.

University of Eastern Finland
Department of Applied Physics

Kuopio 2019



Grano Oy
Jyväskylä, 2019

Editors: Pertti Pasanen, Jukka Tuomela,
Raine Kortet , and Matti Tedre

Distribution:
University of Eastern Finland Library / Sales of publications

julkaisumyynti@uef.fi

http://www.uef.fi/kirjasto

ISBN: 978-952-61-3160-3 (print)
ISSNL: 1798-5668
ISSN: 1798-5668

ISBN: 978-952-61-3161-0 (pdf)
ISSNL: 1798-5668
ISSN: 1798-5668

ii



Author’s address: University of Eastern Finland
Department of Applied Physics
P.O. Box 1627
70211 Kuopio, Finland
email: mithilesh.prakash@uef.fi

Supervisors: Professor Juha Töyräs
University of Eastern Finland
Department of Applied Physics
P.O. Box 1627
70211 Kuopio, Finland
email: juha.toyras@uef.fi

Academy Research Fellow Isaac O. Afara
University of Eastern Finland
Department of Applied Physics
P.O. Box 1627
70211 Kuopio, Finland
email: isaac.afara@uef.fi

Post-Doctoral Fellow Lassi Rieppo
University of Oulu
Research Unit of Medical Imaging,
Physics and Technology, Faculty of Medicine
P.O. Box 5000
90014 Oulu, Finland
email: lassi.rieppo@oulu.fi

Reviewers: Professor Silvia Serranti
Sapienza Università di Roma
Department of Chemical Engineering Materials
and Environment,
Via Eudossiana, 18
00184 Roma, Italy
email: silvia.serranti@uniroma1.it

Scientist and Project Leader Rajesh Kumar
Norwegian University of Science and Technology
Biophysics and Medical Technology,
Department of Physics
N-7491, Trondheim, Norway
email: rajesh.kumar@ntnu.no

Opponent: Professor Hugh J. Byrne
Head, FOCAS Research Institute
TU Dublin - FOCAS Research Institute
Kevin Street
D08 NF82, Dublin, Ireland
email: hugh.byrne@dit.ie

iii





Mithilesh Prakash
OPTIMIZATION OF MULTIVARIATE REGRESSION TECHNIQUES FOR NEAR-
INFRARED SPECTROSCOPIC CHARACTERIZATION OF ARTICULAR CARTI-
LAGE
Kuopio: University of Eastern Finland, 2019
Publications of the University of Eastern Finland
Dissertations in Forestry and Natural Sciences
N:o 349

ABSTRACT

Articular cartilage, the soft tissue covering the ends of articulating bones, facilitates
smooth joint movements. This specialized connective tissue is avascular and aneural,
with limited self-healing capabilities. Traumatic injuries to cartilage are often not
apparent in current clinical diagnostics. The early detection of cartilage degenera-
tion could potentially aid in the prescription of treatment measures that could halt
the degenerative process. It could also prevent the development of post-traumatic
osteoarthritis — an incurable condition associated with cartilage erosion, pain, and
reduced joint mobility. Currently, the assessment and repair of joint injuries are per-
formed during arthroscopy. However, arthroscopic evaluations rely on the visual
assessment and manual palpation of the cartilage surface, so they are subjective
and poorly reproducible. This feature necessitates the development of arthroscopic
methods more quantitative in nature for the rapid assessment of cartilage integrity.

In the past decade, near-infrared spectroscopy (NIRS) has gained popularity as
a nondestructive and rapid characterization tool for evaluating the integrity of car-
tilage and other joint tissues. NIRS-based evaluations rely heavily on multivari-
ate regression analysis to relate spectroscopic measurements with tissue properties.
These multivariate analysis techniques are often adopted from other spectroscopic
applications and must be optimized, in terms of reliability and robustness, for car-
tilage data. The main limitation in the direct application of conventional regression
techniques is the underlying assumption of the independence of observations. In
tissue mapping and other protocols that involve repeated measurements, a spatial
dependency is introduced in the data due to adjacent measurement locations. This
thesis aims to provide insight into effective multivariate approaches for the analysis
of cartilage spectral data, account for spatial dependency during the analysis of car-
tilage spectral data, and address the challenges in generalizing in vitro models for in
vivo applications.

Study I, a comprehensive comparative study, sought to determine an optimal
multivariate technique for predicting the properties of articular cartilage from its
NIRS data. Partial least squares regression (PLSR), the most commonly applied
technique in chemometrics, emerged as the optimal regression technique, with its
performance further enhanced by variable (wavelength) selection methods. Study II
addressed the limitations of the direct application of conventional regression tech-
niques, such as PLSR, in experiments where adjacent measurement locations create
spatial dependency. This was achieved by the development of a hybrid regression
technique that accounts for repeated measures in NIRS and other spectroscopic tech-
niques. Study III applied the hybrid regression technique developed in study II to
arthroscopic evaluations of cadaveric human knee joints ex vivo. The hybrid models
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trained on the in vitro measurements reliably modelled the relationship between car-
tilage NIRS data and its biomechanical properties. The trained models, assisted by
k-nearest neighbours (kNN)-based classifiers, also reliably predicted biomechanical
properties from arthroscopically acquired NIRS data. Thus, NIRS enables the quan-
titative evaluation during arthroscopy of the biomechanical properties of human
cartilage.

In conclusion, the studies in this thesis explore and optimize regression tech-
niques for the NIRS characterization of articular cartilage integrity. The limitations
of conventional regression techniques were addressed via the development of a hy-
brid regression technique to aid the arthroscopic application of NIRS, thus paving
the way for clinical applications in joint tissue diagnosis.

National Library of Medicine Classification: QT 34.5, QT 36, WB 288, WE 300, WE
348, WN 180
OCIS codes: 300.1030, 300.6340, 170.6510
Medical Subject Headings: Cartilage, Articular; Osteoarthritis/diagnosis; Spectroscopy,
Near-Infrared; Multivariate Analysis; Regression Analysis; Arthroscopy; Joints; Knee Joint;
Collagen; Proteoglycans; Biomechanical Phenomena
Yleinen suomalainen asiasanasto: nivelrusto; nivelrikko; lähi-infrapunaspektroskopia;
monimuuttujamenetelmät; regressioanalyysi; nivelet; kollageenit; biomekaniikka
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1 INTRODUCTION

Articular cartilage is a unique connective tissue lining the ends of articulating bones.
Together with synovial fluid, cartilage facilitates the smooth and near-frictionless
movements of the diarthrodial joints. The main components of this tissue are water
and the extracellular matrix (ECM). The ECM consists mainly of collagen, proteo-
glycans (PG), and chondrocytes; chondrocytes are the cells in cartilage [3]. Chon-
drocytes maintain and synthesize the tissue matrix, while all the other components
contribute to the biomechanical properties of articular cartilage [4, 5]. Changes in
the structure and composition of cartilage due to ageing (wear and tear) or trauma
can upset tissue homeostasis, leading to degeneration [6, 7].

Osteoarthritis (OA), characterized by the erosion and loss of cartilage tissue, is a
painful condition that results in reduced mobility, an overall reduction in the quality
of life, and substantial socioeconomic burden globally [8]. Although the pathogene-
sis of OA is unclear, OA can stem from the injury of cartilage, subchondral bone, or
the meniscus [6, 9, 10]. The biomechanical, structural, and biochemical, properties
of cartilage change with the progression of OA [11–13]. Currently, joint defects are
diagnosed via clinical examination followed by radiographic examination, and if re-
quired, MRI. Cartilage is invisible in native X-ray images, whereas CT and MRI lack
the resolution to detect minor changes [14, 15]. During the arthroscopic examina-
tion of meniscal injuries or ligament tears, the cartilage surface is usually examined
for lesions and defects. The severity of cartilage injury is diagnosed using the In-
ternational Cartilage Repair Society (ICRS) scoring system, which is based on the
relative depth of lesions. However, the outcome of ICRS-based diagnosis is subjec-
tive and poorly reproducible [16]. Although several repair techniques are available
for the treatment of local osteochondral defects [17], knowledge of lesion severity
and of spread from the site of a defect is critical for the success of repair arthroscopy
[18]. Since arthroscopy is subjective, its inter- and intra-operator reproducibilities are
poor [16, 19]. Therefore, arthroscopic techniques that are more quantitative could
substantially facilitate the early detection of OA [20]. Earlier studies have demon-
strated the potential of near-infrared spectroscopy (NIRS) for detecting changes in
cartilage structure and morphology during degeneration [21–23].

NIRS is a promising technique for evaluating the integrity of cartilage [24, 25].
This method is sensitive to both micro- and macroscopic properties of the tissue.
This rapid nondestructive method penetrates deep into biological tissues [26], be-
yond articular cartilage thickness [23, 27], permitting the simultaneous quantitative
evaluation of both cartilage and subchondral bone [28, 29]. Several studies have
successfully applied NIRS for the in vitro and ex vivo assessment of cartilage, via
robust multivariate analytical techniques. These include principal component anal-
ysis (PCA) and partial least squares (PLS) regression, to estimate the composition,
degenerative stage, and thickness of articular cartilage [21–23].

With overlapping and broad absorption bands, NIRS data is complex; therefore,
multivariate regression techniques have become a standard method for analysing
its spectroscopic data. Multivariate regression models can be improved through a
process known as variable selection. Numerous multivariate regression techniques

1



and variable selection methods exist, but they are currently not optimized for the
evaluation of cartilage spectral data. Furthermore, the utilization of these methods
on spatially dependent data sets, such as the mapping of knee joint tissue properties,
violates the assumptions of the independence of observations [30]. The adaptation
of NIRS for joint diagnostics helps assess cartilage properties in animal and human
joints in vitro and ex vivo [17, 21, 22, 31, 32]. However, these limited exploratory
studies can only be considered as a proof of concept of the technique, necessitating
the optimization of multivariate analysis methods for the accurate spectroscopic
diagnosis of cartilage pathology.

Predicting cartilage tissue properties during arthroscopy is a challenging task
[33]. Narrow joint spaces restrict optimal probe-cartilage contact, resulting in noisy
spectra during arthroscopic acquisition. Without outlier detection and optimization
(noisy spectra), predictions with in vitro models could be unreliable. Additionally,
certain wavelengths may be saturated due to increased water content between probe
and cartilage and hence become unusable. This thesis aims to provide an optimal
approach for the multivariate regression analysis of cartilage spectral data; by em-
ploying novel regression algorithms, it aims to address the challenges of generaliz-
ing in vitro prediction models for use in arthroscopy (ex vivo).

In this thesis, the study I focused on the determination of an optimal multivari-
ate regression technique for estimating the properties of articular cartilage from its
spectral data. This comparison study utilized conventional and advanced regression
techniques. Additionally, it investigated the performance of variable selection meth-
ods. PLS regression emerged as the most optimal (with consistent performance)
for our cartilage dataset. Its prediction performance was further enhanced by the
Monte-Carlo uninformative variable elimination method. In study II, a hybrid re-
gression technique was developed to account for spatial dependency in NIRS mea-
surements and to improve the efficiency and reliability of the model. Principal
component-based linear mixed effects (PCA-LME) and least absolute shrinkage and
selection operator (LASSO)-based LME were compared against standard regression
models. Accounting for spatial dependency resulted in improved performance over
standard regression technique models, and PCA-LME performed consistently bet-
ter than LASSO-LME. In study III, the hybrid model developed (PCA-LME) was
utilized, and a protocol was designed for the selection of the best spectra from a
series of possibly noisy spectra acquired during arthroscopy from the human knee
joint cartilage ex vivo. In addition, our novel use of the classifier reliably discarded
spectral outliers, enhancing prediction performance with arthroscopic spectra.
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2 ARTICULAR CARTILAGE

2.1 STRUCTURE AND COMPOSITION

Articular cartilage is the connective tissue lining the ends of the articulating bones
of a joint (Figure 2.1) [6, 34, 35]. Together with synovial fluid [36], articular cartilage
enables near-frictionless movements of the joints; with the meniscus [37], articular
cartilage helps in distributing the load to the underlying subchondral bone [38].
The thickness of cartilage varies with location, age, gender, and species [39–42]; the
typical thickness in the human knee is between 1 to 6 mm [39, 40, 43].

Conceptually, articular cartilage can be considered as a biphasic material which
has a fluid phase (water and dissolved electrolytes), and a solid phase; the latter
comprises chondrocytes (cells), collagen fibres (type II), proteoglycans (PG), and
other glycoproteins [44, 45]. Around 60% to 87% of articular cartilage consists of
interstitial water, of which 30% is in the intrafibrillar space of the collagen network.
The amount of water varies with the fixed charge density (FCD), collagen orienta-
tion, and the stiffness of the collagen network (i.e. resistance to swelling) [46, 47].
Chondrocytes represent 1% to 5% of the tissue volume and are involved in the syn-
thesis and maintenance of the components of the cartilage matrix [44]. Collagen, the
most abundant protein in the body, is the key structural element providing tensile
properties to the tissue and offers minimal resistance to compression [48, 49].

Figure 2.1: Human knee joint and schematic representation of articular cartilage.

2.2 TISSUE PROPERTIES

Mature articular cartilage is stratified into superficial, middle, deep, and calcified,
zones, based on collagen orientation [50]. The structure and distribution of these
constituents vary between these zones (Figure 2.1) [44]. PG (or fixed charge den-
sity, FCD) and collagen contents increase, while fluid fraction decreases from the
articular surface to the bone cartilage interface. In the superficial zone (5%-10% of
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cartilage thickness), collagen fibrils are densely packed (although the density is the
lowest among all the zones) and are oriented parallel to the cartilage surface. In the
middle zone (10%-20%), these fibrils (moderate density) bend towards the subchon-
dral bone, with random orientation. In the deep zone (20%-90%), the fibrils (highest
density) run perpendicular to the cartilage surface (Figure 2.1).

Articular cartilage can be considered in a mechanical sense as a poro-viscoelastic
anisotropic material although numerous other models with varying degrees of com-
plexity exist [51, 52]. Viscoelasticity and the interplay of fluid and solid components
have time-dependent properties that can be observed as flow-dependent and flow-
independent behaviours (Table 2.1) [53]. Flow-dependent behaviour is characterized
by the frictional flow of the interstitial fluid [54], whereas flow-independent time-
dependent behaviour is characterized by the intrinsic viscoelasticity of the matrix
[55].
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Figure 2.2: Stress-relaxation response of human knee articular cartilage

Table 2.1: Cartilage response.

Loading Response
No load Tissue matrix swell due to osmotic pressure.

The tissue expansion volume is controlled by
collagen [53] .

Compression A transient response where fluid flows out of tissue.
The dynamic response is due to high fluid pressure
and collagen tension.
The static response is due to proteoglycans (PGs) [54, 55].

Under constant compressive force, articular cartilage behaves as a porous mate-
rial and the interstitial fluid flows rather easily. The matrix [56], however, regulates
the fluid flow; at mechanical equilibrium, the fluid flow ceases. At the same time,
resistance starts to build up against further compression and is mainly controlled
by the solid matrix [57]. When the tissue is unloaded, the fluid flows back into the
matrix, regaining the original volume. This flow-dependent behaviour is observed
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in the standing position (i.e. loading) for a certain time and then resting (i.e. un-
loading). This stress-relaxation response of articular cartilage can be measured in
laboratory conditions, for example by indentation testing (Figure 2.2). However, un-
der dynamic loading, fluid flow plays almost no role in the mechanical response.
This is because the interstitial fluid has no time to escape, so the tissue becomes
pressurized and carries the load applied. Therefore, the structure also plays an
important role in the mechanical response of the tissue (Table 2.2).

Table 2.2: Structure and tissue property of cartilage [3].

Structure Tissue property
Collagen Dynamic and tensile properties.

Poisson’s ratio.
Permeability.
Non-linearity in compression-tension.

Proteoglycans (PGs) Equilibrium modulus.
Permeability.
Tissue swelling.

Interstitial fluid Permeability.
Instantaneous response.
Dynamic response.

2.3 OSTEOARTHRITIS: DEVELOPMENT, DIAGNOSIS, AND TREAT-
MENT

Osteoarthritis (OA) is a painful joint disease affecting hundreds of millions of people
globally [58]. OA could arise due to ageing (wear and tear, fatigue) or trauma
[59, 60]. The pathogenesis of OA is still unclear [61, 62]. However, injuries to
cartilage, menisci or supporting ligaments, impair joint mechanics and can lead to
post-traumatic OA [63]. Hence, the early detection of cartilage degeneration could
enable clinicians to immediately prescribe appropriate treatment or therapy.

Articular cartilage can be considered as a primitive tissue as it is devoid of any
connection to the nervous or circulatory system; hence, it has a limited self-healing
capability [45]. In the early stages of OA [64], the superficial zone of cartilage expe-
riences loss of PGs and disruption of the collagen network. This results in decreased
tensile and compressive properties (i.e. softening) of the tissue, making it suscepti-
ble to further damage. Surface fibrillation and tissue swelling are noticeable at this
stage. In the second stage, chondrocytes in the tissue matrix respond by clearing the
damaged matrix and increasing the synthesis of PGs and collagen. If these chon-
drocytes fail to restore the homeostatic balance, the disease progresses to the third
stage [65]. The decrease in the activity of chondrocytes results in the rapid loss of
PGs and increased fibrillation of the articular surface [66]. Eventually, the cartilage
layer is fully eroded, exposing the underlying bone.

Osteoarthritic changes begin to affect the whole joint within a timeline of a few
months to a few decades [67, 68]. Bone remodelling occurs to compensate for
changes in loading and increasing wear and tear in other joint tissues, thus lead-
ing to stiffer joint movements, swelling, and pain. OA most frequently occurs in
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hand, knee, and hip, joints. Thus, OA reduces the quality of life and impacts a
person’s productivity and in turn that of the society [69].

Clinically, joint diagnosis is based on physical examinations; severity is gauged
by swelling, pain, and impaired joint movements [70, 71]. The initial diagnosis is
confirmed by either X-ray or MRI [72, 73]. Since cartilage is invisible in conventional
X-ray images, diagnosis is based on the joint space narrowing and increased density
of the subchondral bone. However, these indirect observations can only be detected
in the later stages of OA [74]. While MRI has excellent tissue contrast that enables
the evaluation of cartilage health [75], its drawbacks are the cost and relatively low
image resolution [76]. Hence, the initial signs of OA, i.e. cartilage fibrillation, cannot
be observed.

Table 2.3: Summary of ICRS scores [77].

Score Criterion
ICRS 0 Normal intact cartilage and no surface defects.

ICRS 1 Surface fibrillation and/or softening of the surface,
tissue swelling and fissures.

ICRS 2 Extended tissue defects up to <50% of cartilage thickness.

ICRS 3 Defects extend >50% of cartilage thickness
but does not reach the subchondral bone.

ICRS 4 Defects expose the subchondral bone.

The early diagnosis of cartilage degeneration is important to enable the initia-
tion of appropriate repair or therapy; cartilage has limited self-healing properties
[78]. The reduction of possible risk factors that lead to cartilage damage, such as
being overweight, muscle weakness, and repetitive and intense loading, is possible
[79]. The reduction of some others, such as hereditary, gender, or ageing, factors
is unfeasible [80]. OA symptoms can be managed by taking anti-inflammatory and
analgesic drugs to relieve pain [81], while intra-articular hyaluronic injections may
be effective in aiding joint movements, but the overall results are unconvincing [73].

Currently, OA has no cure, but drugs for altering the disease and slowing the
rate of progression are continuously under development [82]. Surgical interventions,
such as mosaicplasty or autologous chondrocyte implantation, have been developed
for the repair of injured cartilage [83, 84]. But surgical interventions are expensive
and, hence, not affordable for all. Future developments of existing drugs and sur-
gical intervention, and monitoring the progress of these therapies, would require
effective diagnostic methods.

Clinically, joint tissue repairs for ligament and meniscal tears are conducted via
arthroscopic surgeries. During such surgeries, cartilage surfaces are also examined
for lesions. Unfortunately, this examination is highly qualitative and subjective,
due to the use the of visual inspection and manual palpation of the cartilage sur-
face [85, 86]. Furthermore, arthroscopic evaluation suffers from both intra-observer
and inter-observer subjectivity [87–89]. Cartilage injuries observed in arthroscopy
are graded according to the International Cartilage Repair Society (ICRS [77], Table
2.3) grading system. The current diagnostic scenario is ineffective, and 75% arthro-
scopists consider the application of quantitative techniques during arthroscopy [90].
Near-infrared spectroscopy (NIRS) has shown promising results for evaluating early
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changes in cartilage structure and composition; it has also been utilized in monitor-
ing the progress of surgical interventions in animal models [28, 91]. Although NIRS
could aid orthopaedic surgeons during arthroscopy, it relies heavily on the predic-
tions of multivariate regression techniques; these techniques are currently not opti-
mized for cartilage data and perform sub-optimally outside laboratory conditions.
This thesis focused on optimizing regression techniques for the accurate estimation
of cartilage properties from its spectral data and designing protocols for transition-
ing the technique from in vitro to ex vivo applications.
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3 NEAR-INFRARED SPECTROSCOPY

Near-infrared spectroscopy (NIRS) is a rapid and non-destructive tool for character-
izing a wide range of homogeneous and heterogeneous materials [92–94]. NIRS is
based on the vibrational and rotational transitions of atoms or molecules at ambient
temperatures, in the wavelength region of 700 to 2500 nm (Figure 3.1). NIRS has
good tissue penetration depth (≥ 5mm [95]) and minimal need for sample prepa-
ration. With advancements in computational power and multivariate regression
techniques, NIRS has been gaining popularity in several fields; examples include
pharmaceutics, agriculture, and biomedical engineering [94, 96].

Figure 3.1: The electromagnetic spectrum.

3.1 THEORY

Optical spectroscopy utilizes light or photons to irradiate the molecular bonds of the
sample causing a shift in energy levels from a ground state (v = 0) to an excitation
state (v ≥ 1) (Figure 3.2). The energy of a photon is given by the following equation:

Energy = hv =
hc
λ

, (3.1)

where h is Planck’s constant, v the frequency, c the speed of light, and λ the wave-
length. A transition from v = 0 to v = 1 is called a fundamental transition, and
transitions from v = 0 to v > 1 are overtones; at higher temperatures, transitions
from v = 1 to v > 1 called hot bands occur. The mid-infrared (MIR) region excites
fundamental molecular vibrations; and near-infrared (NIR) spectral incidence on a
sample results in the stretching and bending of molecular bonds, giving rise to over-
tones (Figure 3.3 and Table 3.1). Molecular bonds can be approximated by a spring
model, and any stretching or compression action results in an equal and opposite
force. Hooke’s law represents this force developed by the spring thus:

F = kx, (3.2)

where F is the spring force of the bond, k the spring constant, and x the distance
between nuclei. Calculations of the vibration frequencies of overtones requires un-
derstanding quantum mechanics (harmonic and anharmonic oscillation models [97])
and are out of the scope of this thesis. Multiple overtones occurring simultaneously
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v = 0

v = 1

v = 2

v = 3

v = 4

Figure 3.2: Energy levels for a vibrating molecule. Transition from v = 0 to v = 1
is fundamental, transitions from v = 0 to v > 1 are overtones and transitions from
v = 1 to upper levels are called hot bands.

Equilibrium bond length

Strecthed bond length

Compressed bond length

S ing force

Spring force

Ground state

Vibrational
excitation

hv

Figure 3.3: Vibrational stretching mechanisms. 2D diagram captures the change in
bond length but also changes in bond angles occur.

give rise to combination bands. Hence unlike MIR, NIR spectral energies lack signa-
ture peaks relating to a particular molecular band, rendering them hard to analyse.

In this thesis, near-infrared absorption was measured in reflectance mode. The
intensity of light beam traversing the sample is altered due to the scattering and
absorption in the sample (equation 3.3). The absorbance values are calculated using
Beer-Lambert’s law as follows: (equation 3.4).

I = I010−µl , (3.3)

A = − log10 T = − log(
I
I0
). (3.4)

where I is the intensity of the light after traversing the sample, I0 is the initial in-
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Table 3.1: Near-infrared bands of interest [97].

Wavelength Assignment o f bond stretch
range(nm)

780–850 3rd overtone N–H

850–950 3rd overtone C–H

950–1100 2nd overtones of N–H and O–H

1100–1230 2nd overtone C–H

1300–1420 Combination C–H

1400–1550 1st overtones of N–H and O–H

1650–1800 1st overtone C–H

1900–2000 2nd overtones of O–H bending and C=O

2000–2200 Combination N–H stretching, combination O–H ,
2nd overtone N–H bending

tensity of light, µ the absorption coefficient of the material, and l is the distance
traversed through the material. I, I0, µ, A, T, are wavelength (λ)-dependent param-
eters.

3.2 INSTRUMENTATION

The main instrumentation in a modern NIR reflectance spectroscopy consists of a
light source, an optical probe, and spectrometer(s). Fibre-optic cables transmit light
from the light source to the sample and conduct the scattered light back from the
sample to the spectrometer.

The spectrometer (Figure 3.4) utilized in this thesis is commonly used in re-
flectance spectrometry and is based on the Czerny-Turner configuration. The scat-
tered light (Figure 3.4) (from the sample) collected from the probe is passed through
a narrow slit and then onto a collimating mirror, a reflection grating, a focusing mir-
ror, and finally onto an electronic detector. The resolution of the system is controlled
by the slit size and different grades of reflectance grating. The resolution of the sys-
tem can be increased by narrowing the slit and increasing the number of lines on the
grating. A narrowed slit increases signal loss; however, this can be compensated by
longer exposure time. Hence, the resolution of the system is inversely proportional
to exposure time. Real-time applications, such as in vivo arthroscopy, require fast
acquisition times. As faster acquisition times increase noise in the spectra, finding a
balance between the two is important.

Commonly employed light sources in NIRS instrumentation include tungsten-
halogen and xenon lamps; they emit light covering ultraviolet (UV), visible, and
NIR, spectra (Figure 3.1). Clinical applications, however, require the filtering out of
harmful UV range, for safety reasons.

To minimize inherent instrumentation noise and to scale absorbance values, dark
and reference spectra are acquired prior to sample measurements. A dark spectrum
is acquired by blocking the light source to the spectrometer, enabling the measure-
ment of background electrical noise. Next, the light source is unblocked, and a
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reference spectrum is measured from a high reflectance standard (~100% e.g., Spec-
tralon, SRS-99, Labsphere Inc., North Sutton, USA). The absorbance values are then
calculated as:

A = − log10(
S− D
R− D

), (3.5)

where S is the sample spectrum, D the dark spectrum, and R the reference spectrum
from a reflectance standard. The absorbance value at each wavelength creates a
spectrum (Figure 3.4).

Sample and
probe

Detector

Reflection
grating

Focusing
mirror

Collimating
mirror

Slit

Output signal

0

4

800 1900Wavelength

A.U.

Figure 3.4: Schematic diagram of a conventional reflectance spectrometer. Optical
fibres housed in the probe transmit light into a sample from which the scattered and
reflected light is collected and transmitted to the spectrometer. Inside the spectrom-
eter, light is channelled through a slit, followed by reflections from a collimating
mirror, a reflection grating, a focusing mirror and on to a detector.
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3.3 PREPROCESSING METHODS

Preprocessing of the absorbance spectrum is an important step in NIRS applications
[98]. This step removes unwanted features of the signal, improving the performance
of the calibration model. Most preprocessing techniques that are popular can be
grouped into scatter-correction and spectral derivative methods.

Scatter-correction methods are designed to eliminate the variability in the spectra
due to scattering effects. These methods include de-trending, standard normal vari-
ate (SNV), and normalization; and multiplicative scatter correction (MSC), inverse
MSC, extended MSC, and other MSC variants. MSC is a two-step method. First, the
correction coefficients from additive and multiplicative contribution are estimated
(Equation 3.6). Then spectra correction is applied from the coefficients estimated
(Equation 3.7).

xorg = b0 + bre f ,1 ∗ xre f + e, (3.6)

xcorr =
xorg − b0

bre f ,1
= xre f +

e
bre f ,1

(3.7)

where xorg refers to original sample spectra, xre f is a reference spectrum utilized for
preprocessing all the data, and e the error not modelled in xorg; xcorr is the corrected
spectra, and b0 and bre f ,1 are sample specific scalar parameters.

Similarly, SNV first centres and scales each spectrum to correct the interference
from light scatter (Equation 3.8). The advantage of MSC is that the entire spectra
are related to a common reference spectrum. If the reference is free from noise, then
MSC is a good choice; otherwise, SNV should be considered.

xcorr =
(xorg − xavg spectra)

Standard Deviation o f spectrum
(3.8)

Spectral derivative methods are designed to eliminate both additive and mul-
tiplicative contributions of the noise in the spectra. The first derivatives eliminate
the baseline effects while the second derivatives eliminate both additive and mul-
tiplicative effects. ‘Finite differences’ is a basic method in spectral derivation; the
estimation of the first derivative (Equation 3.9) is based on two adjacent spectral
measurement points, and that of the second derivative (Equation 3.10) is based on
two measurement points on the first-order derivative of the spectra.

x
′
i = xi − xi−1, (3.9)

x
′′
i = x′ i − x′ i−1 = xi−1 − 2 ∗ xi + xi+1 (3.10)

where x
′
i is the first order derivative and x

′′
i the second order derivative at an arbi-

trary point i.
Spectral derivation groups of interest include Norris-Williams (NW) derivatives

and Savitzky-Golay (SG) polynomial derivatives. NW is a basic derivative method
designed to avoid noise amplification experienced when using the ’finite differences’
method. First, by means of a specific window size, it smoothes spectra (Equation
3.11). Next, the first-order derivative is performed on two smoothed values over a
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defined interval size between the points (Equation 3.12). The second-order deriva-
tion is performed on two times the value at a point i and smoothed values on either
side of i over a defined interval distance, as in Equation 3.13.

xs,i =
∑m

j=−m xorg,i+j

2m + 1
, (3.11)

x
′
i = xs,i+interval − xs,i−interval , (3.12)

x
′′
i = xs,i−interval − 2 ∗ xs,i + xs,i+interval (3.13)

where m is the number of points in the smoothing window centred at the point i.
Similar to NW, SG includes a smoothing step and derivatives at the centre point

i; a polynomial is fitted in a symmetric window on the raw data. SG is preferred
when the peaks in the spectra are defined by a few points because these peaks are
not smoothed out completely.
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3.4 SPECTRAL CHARACTERIZATION OF CARTILAGE PROPERTIES

Absorption peaks in the NIR spectrum of cartilage arise from vibrations of different
molecular bonds in the tissue matrix, including O-H, N-H, C-H, and S-H, bonds.
These peaks are affected by the attenuation of light intensity as a result of energy
loss in path length, which in turn is due to the thickness of the sample [27]. The
aforementioned chemical bonds correspond to the main building blocks of cartilage
(i.e., water, PG, and collagen); they can, therefore, characterize cartilage structure
and composition [99]. However, the direct visual interpretation of cartilage NIR
spectral data to determine tissue properties is not a straightforward task, due to
multicollinearity and highly overlapping bands in the NIR spectral range.

Initial NIRS studies on cartilage showed correlation between mean absorbance
values in the spectral ranges 1150–1220 nm and 1340–1475 nm and a degenerative
condition in cartilage, such as the type of lesion or grade of injury (for example, OA
or ICRS grade) [16, 17]. This technique of peak intensity analysis or analysing area
under the curve is called univariate analysis. Univariate analysis fails to capture
information from wider wavelength regions. The quantitative assessment of carti-
lage can be substantially improved by utilizing information from the broad spectral
range, through techniques known as multivariate regression. For a summary of
NIRS studies, see Table 3.2.

Table 3.2: Earlier NIRS studies on cartilage tissue relevant to this thesis.

Period Study Property Source Model
2008-13 Spahn et al [31],

Padalkar et al [100]
Water content Ovine, bovine Univariate,

PLSR
2008-18 Marticke et al

[101], Spahn et
al [31], Afara et
al [102–104] and
Sarin et al [105]

Biomechanical Ovine, bovine,
hominine,
equine

Univariate,
PLSR

2010 Baykal et al [106] Collagen con-
tent

Bovine PLSR

2012-15 Afara et al [21, 27,
103]

Thickness Murine, bovine,
hominine

PCA,
PLSR

2015 Afara et al [103,
107]

PG content Bovine, homi-
nine

PCA,
PLSR
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4 MULTIVARIATE REGRESSION TECHNIQUES

Multivariate regression techniques comprise methods that establish the relationship
between the property of a sample (Y- reference variable) and the spectral data of that
sample (X- explanatory variable). The three main steps in analysing NIRS spectral
data are preprocessing, qualitative analysis, and regression. Preprocessing aims to
improve the signal by removing unwanted features and to simplify the spectral data
(discussed in section 3.3). The qualitative analysis aims to classify spectra based on
patterns recognized via supervised and unsupervised learning approaches. Quan-
titative or regression methods aim to estimate or predict the reference properties of
a sample from its spectral data. (Figure 4.1).

Prediction model

Calibration

and

Validation

Figure 4.1: Typical workflow of multivariate regression analysis. [92]

4.1 CALIBRATION AND VALIDATION

NIRS prediction models are trained to replace destructive methods of determining
sample properties (Y); it utilizes spectroscopic features (Y), such as spectral inten-
sities or absorbances. The model development process comprises of the following
steps [108]:

1. The calibration model is developed by using a training set (xT , yT) and vali-
dated by using a validation set (xV , yV). The standard error of validation (SEV)
is used to further tune model parameters.

2. To assess the baseline model performance in ideal conditions, the standard
error of calibration (SEC, equation 4.1) is computed from (xT , yT) and (xV , yV)
datasets.

3. Finally, to evaluate the real-world performance of the model, the standard
error of prediction (SEP, equation 4.2) is computed on an independent dataset.
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In practice, the first and second steps are performed together using a cross-validation
protocol (examples are k-fold, randomization, and bootstrap), so SEC and SEV are
computed simultaneously. During cross-validation, spectral data (X) and reference
properties (Y) are partitioned into calibration datasets (for example ~75%) and val-
idation datasets (for example ~25%). The performance of a model is often assessed
by using error metrics, such as the SEC, root mean square error of cross-validation
(RMSECV), SEP and correlation coefficient (R). This coefficient and these ratios are
calculated as follows:

SEC =

√√√√ 1
Ncal. − 1− Ind.

Ncal.

∑
i=1

(ŷi − yi)2 (4.1)

SEP =

√√√√ 1
Npred. − 1

Npred.

∑
j=1

(ŷj − yj)2 (4.2)

RMSECV =

√√√√ 1
Ncal.

Ncal.

∑
i=1

(ŷi − yi)2 (4.3)

R2 = 1− ∑n
s=1(ys − ŷs)2

∑n
s=1(ys − ȳ)2 (4.4)

where ŷi and ŷj are the predicted values of the ith sample in the calibration and jth
sample in the prediction sets, yi and yj are the measured values of the ith sample in
the calibration set and jth sample in the prediction sets, Ncal., Npred. are the sample
count in the calibration and prediction datasets, and Ind. is the number of indepen-
dent variables in the regression. ys and ŷs denote actual and predicted of the sth
observation in the datasets including calibration, validation and testing, ȳ denotes
the mean value of the measured data. In general SEC decreases as R2 increases, R
is always greater than R2, 0 ≤ R2 ≤ 1, and 0 ≤ RMSEC.

4.2 MULTIVARIATE REGRESSION TECHNIQUES

Principal component regression (PCR) and partial least squares regression (PLSR)
are common multivariate regression techniques in NIRS [92]. Both these techniques
create new independent variables called components (or latent variables) that are
linear combinations of the original data (X). PCR utilizes only spectral data (X)
while PLSR utilizes both spectral data (X) and tissue property (Y).

Regularization regression methods, such as ridge regression and least absolute
shrinkage and selection operator (LASSO), and the least squares version of support
vector machines (LS-SVM) have also been recently used in NIRS applications [109–
113]. Regularization solves the overfitting problem, by adding a penalty term to
the objective function, thereby controlling overall model complexity. Both ridge re-
gression and LASSO regression are applicable to multicollinear datasets; LASSO is
more computationally efficient. While LASSO and ridge regression are linear mod-
els, non-linear relationships between (X) and (Y) can be modelled using support
vector regression. For a summary of these regression techniques and their corre-
sponding hyperspace, see Table 4.1 and Figure 4.2.
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Table 4.1: Summary of regression techniques

Technique Summary Advantage(s) Disadvantage(s)
PCR Linear projection method, re-

duces the dimensionality of the
data using only explanatory
data, X, into uncorrelated sub-
space. Latent variables are
regressed using ordinary least
squares.

Dimensionality
reduction and
handles multi-
collinearity in
X.

Latent variables
are based only on
the variance of X
while ignoring the
variance of Y.

PLSR Linear regression technique
based on reducing dimension-
ality by projecting explanatory
data, X, to a subspace of la-
tent components maximizing
covariance between X and Y.

Dimensionality re-
duction and han-
dles multicollinear
in X.

The output is a lin-
ear combination of
input.

Ridge Shrinkage regression technique.
Dimensions with the least vari-
ance are shrunk the most.

Stable when P �
N *.

Selects all predic-
tors in the final
model instead of a
subset of variables.

LASSO** Shrinkage regression technique
based on minimizing the sum of
squared error and setting some
coefficient estimates to zero.

The solution is
sparse so compu-
tationally efficient.

Covariate selection
is arbitrarily done
if the dataset is
highly collinear.

LS-SVM** Least squares version of the
support vector variant. Creates
a model based on newly formed
support vectors from the train-
ing dataset.

Can also model
non-linear rela-
tionships.

Lack of sparseness.

∗ P is the dimension of the dataset of N observations.
∗∗ LASSO: least absolute shrinkage and selection operator, LS-SVM: least squares version
of support vector machines.

4.3 OPTIMIZING REGRESSION MODELS

After the preprocessing step, regression model performance may be improved by
variable (i.e., wavelength) selection and dimension reduction methods. Variable
selection methods focus on selecting wavelengths that best predict tissue property
while eliminating redundant wavelengths or by eliminating wavelengths that fail to
improve the performance of the model.

Typical variable selection methods used for analysing NIRS data include Monte
Carlo uninformative variable elimination (MC-UVE), competitive adaptive reweighted
sampling (CARS), variable combination population analysis (VCPA), backward in-
terval PLS (BiPLS), genetic algorithm (GA), and jackknife [114–119]. For a summary
of these methods, see Table 4.2. Alternatively, to reduce high dimensional data, PCA
and LASSO can also be highly effective. Dimension reduction can also improve the
computational efficiency of a model and make the results easier to interpret via
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visualizations (Figure 4.2).

(a) (b)

β1

β^

β2

LASSO

estimate

(c) (d)

Figure 4.2: Hyperspace of regression methods: (a) Difference between PCR and
PLS vectors in orthonormal transformed space [120]; (b) Ridge and (c) LASSO es-
timates with contours of error and constraint functions. The circle and rhombus
shaded regions around the origin are β2

1 + β2
2 ≤ t2, |β1|+ |β2| ≤ t;, (d) SVM

boundaries in H1 and H2 hyperplane space [121].

20



Table 4.2: Summary of variables selection methods

Method Summary Advantage(s) Disadvantage(s)
GA A method based on genetics and natu-

ral selection principles. An initial pop-
ulation (or wavelengths) are randomly
chosen (t), the fitness of the popula-
tion is measured. New parents from
the population are selected, crossover
to the existing population (t + 1), per-
form mutation (t + 1) and determine
the fitness of the population. This pro-
cess is repeated and the best popula-
tion is chosen.

Automation possi-
ble, a combination
of GA and PLS per-
forms better than
standalone PLS re-
gression.

Complicated
parameters,
stochastic and
computationally
heavy.

CARS Follows ’survival of the fittest’ the-
ory, removing unused variables and
reduces collinear effects of modelling
variables. Each variable is treated as
individual and variables with large
PLS coefficients are retained by adap-
tive reweighted sampling technique.

Simple and robust. Selection based
on regression
coefficients may
not be an optimal
method.

VCPA VCPA utilizes exponentially decreas-
ing function to eliminate variables
with little or no contribution thereby
shrinking the variable space.

Sparse variable se-
lection method.

Biased towards re-
taining very few
variables.

BiPLS The data is subdivided into non-
overlapping intervals and PLS mod-
els are created by leaving one inter-
val out. Poorest performing interval
in RMSECV values is omitted.

Simple to imple-
ment.

Low impact
on modelling
performance.

MC-
UVE

A large number of models are cal-
ibrated with a random selection of
wavelengths. The coefficients of the
models are utilized to assign a stabil-
ity index to each wavelength. Wave-
lengths above certain stability index
are chosen.

Easy to use, com-
putationally fast,
decreased overfit-
ting.

Performance im-
provements are
not significant.
Selection based
on regression
coefficients.

Jack-
knife

Student’s t-test statistics is applied for
selecting variables within determined
a threshold (e.g. t = 0.5).

Simple method
resembling cross-
validation.

Ineffective method.
Selection based
on regression
coefficients may
not be an optimal
method.

* GA: Genetic algorithm; CARS: Competitive adaptive reweighted sampling;
VCPA: Variable combination population analysis; BiPLS: Backward interval selection methods;
MC-UVE: Monte Carlo uninformative variable selections.
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4.4 LIMITATIONS OF CURRENT REGRESSION PROTOCOLS

Although multiple options exist for multivariate regression and variable selection,
they are not all optimal for the analysis of cartilage NIR spectral data (Tables 4.1,
4.2). Hence, a comparative study is necessary to investigate techniques most suited
for cartilage spectral data. Furthermore, the adaptation of NIR spectroscopy for the
evaluation of cartilage integrity, such as in tissue mapping applications, often in-
volves, due to experimental design, adjacent measurement locations. Measurements
from adjacent locations would enable the assessment of the spread of lesion on the
cartilage surface; this evaluation can be used to determine the area of damaged car-
tilage that needs replacement. Closely spaced measurements can also be useful for
the post-surgery evaluation of repair success and during follow-up after reconstruc-
tive surgeries. NIRS spectral data collected in this manner are spatially dependent
[30]. Conventional regression techniques, such as PLSR and PCR, assume inde-
pendence of observations; hence, models developed using these methods are less
reliable unless spatial dependency is accounted for. Additionally, models developed
in a controlled environment (in vitro) must be modified to work with the real-time
collection of NIRS spectra data (ex vivo or in vivo) where suboptimal probe-cartilage
contact often results in noisy spectral data. This thesis aims to address these chal-
lenges.
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5 AIMS OF THE THESIS

Near-infrared spectroscopy-based evaluation of articular cartilage health has gained
popularity in recent years. However, current multivariate regression techniques uti-
lized in the development of prediction models need to be optimized for the reli-
able evaluation of cartilage properties for both in vitro and in vivo applications. To
address these challenges in the clinical applications of this optical technique, the
following are the aims of this thesis:

• Determining an optimal multivariate regression technique for the analysis of
cartilage properties, using NIRS spectral data.

• Accounting for spatial dependency to satisfy statistical assumptions in carti-
lage mapping during arthroscopy.

• Optimizing the real-time selection of NIRS spectral data by employing spectral
classifiers and hybrid regression techniques on NIRS spectral data from ex vivo
human cadaver knees.
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6 MATERIAL AND METHODS

This thesis consists of three independent studies. In studies, I and II, equine data
(collected from an earlier study) consisting of NIRS spectral data, thickness, and
biomechanical, structural, and compositional, values, were utilized [1, 2]. The sam-
ples were obtained from a slaughterhouse in Utrecht, Netherlands; hence, no ethical
permissions were necessary. For study III, human cadaver samples were utilized,
and ethical permission was obtained from the local research ethics committee (De-
cision number 150/2016, Research Ethics Committee of the Northern Savo Hospital
District, Kuopio University Hospital, Kuopio, Finland), prior to the commencement
of the study.

15 spectra per location

Femur

Osteochondral
plug d = 8 mm

Articular cartilage

Subchondral
bone

Tibia Patella

Measurement
locationNIRS probe

ArthroscopeSpectrometer

15 mm

1
5
m
m

Studies I , II

Study III

Measurement
location

AI grid

Figure 6.1: Samples used in this thesis and the corresponding measurement loca-
tions. Studies I and II utilized equine fetlock joints with the specific areas of interest
(AI) marked with a grid. In study III, NIRS arthroscopy was performed on human
cadaveric knee joints prior to sample extraction.

In studies I and II, equine fetlock joints (n = 5) were extracted and several ar-
eas of interest (AIs, n = 44) of varying lesion severity identified; by two veterinary
orthopaedic surgeons. Each AI (15 × 15 mm) consisted of 25 measurement loca-
tions arranged in an equispaced 5× 5 grid pattern. Some locations in the AIs were
omitted due to complete loss of cartilage matrix; hence, totally, 869 locations were
measured.

In study III, anatomical locations on the surfaces of the tibia, femur, and patella,
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of both knee joints of human cadavers (n = 8 males and 1 female, age = 68± 7),
was arthroscopically probed, visually assessed, and scored, all by an experienced
orthopaedic surgeon at Kuopio University Hospital (Kuopio, Finland). Cartilage
surface integrity was visualized with a conventional arthroscope (4 mm, 30◦ inclina-
tion Karl Storz GmbH Co, Tuttlingen, Germany) and scored using a novel optical
probe in accordance with the ICRS grading system (Table 2.3). For a summary of
the data in this thesis, see Table 6.1.

Table 6.1: Summary of materials and methods utilized in studies I-III.

Study Joint Number o f Measurement Methods
joints locations

I Equine fetlock N = 5 n = 869a, 202b in vitro NIRS, OCT,
mechanical testing

II Equine fetlock N = 5 n = 869a, 202b, 530c in vitro NIRS, OCT,
mechanical testing

III Human knee N = 18 n = 265a,b ex vivo NIRS,
in vitro NIRS arthroscopy,

mechanical testing
a NIRS.
a Tissue thickness and modulus measurements.
c PG and collagen measurements.

6.1 NEAR-INFRARED SPECTROSCOPY

The spectral data and reference properties obtained from the equine samples were
used in studies I II. The instrumentation for diffuse reflectance spectroscopy com-
prised of a light source (Avalight-HAL-S, Avantes BV, Apeldoorn, Netherlands), a
spectrometer (AvaSpec-ULS2048XL, Avantes BV, λ = 200–1160 nm, resolution = 0.4
nm), and a fibre-optic probe. The optical probe consists of seven fibres (d = 600 µm),
with the central fibre collecting diffuse reflected light back to the spectrometer and
the six peripherally-positioned fibres irradiating the samples. Spectral data within
the 700–1150 nm resgion was utilized during analysis to enable a direct comparison
with earlier studies.

In study III, the instrumentation consisted of a light source (AvaLight-HAL-(S)-
Mini, λ = 360–2500 nm, Avantes BV), two spectrometers (AvaSpec-ULS2048L, λ =
350–1100 nm, resolution = 0.6 nm and AvaSpec-NIR256-2.5-HSC, λ = 1000 – 2500
nm, resolution = 6.4 nm, Avantes BV, Apeldoorn, Netherlands), and a custom-made
arthroscopic fibre-optic probe. The design of the stainless-steel probe resembles
a conventional arthroscopic hook (Figure 6.2), and it can withstand the autoclave
sterilization process. The probe (d = 3.25 mm) consists of 114 fibre-optic cables (d =
100 µm) for the transmission of light to the sample, and seven for either spectrometer
to collect the light scattered and reflected from the sample. In studies I to III, tissue
structure plays a substantial role in the scattering and reflection of light, while the
tissue composition mainly contributes to the magnitude of light absorption.

Before NIRS measurement, reference measurements consisting of background
and reference spectra were acquired in order to calculate absorbance values ac-
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cording to Equation 3.5. In studies I and II, NIRS was measured in vitro under
laboratory conditions with probe-tissue contact in a perpendicular orientation with
cartilage surface. The cartilage surface was periodically hydrated by placing PBS-
soaked cloths over other locations. Each measurement consisted of an average of
three spectra. NIRS (700-1050 nm) preprocessing consisted of smoothing and filter-
ing by an SG filter (25 nm window) followed by second derivative pre-treatment.

Figure 6.2: Similarities between conventional arthroscopic hook used by surgeons
(A) and custom designed NIRS optical probe (B) used in study III of this thesis.

In study III, NIRS measurements were performed arthroscopically (ex vivo) and
repeated under laboratory conditions (in vitro). During arthroscopy, NIR spectra
(n = 15 per location) were acquired while the knee joint was distended with saline
solution (0.9% NaCl concentration), at room temperature (25◦C). During in vitro
measurements, NIR spectra were acquired at the same temperature (25◦C) as in ex
vivo measurements. After establishing optimal (perpendicular) probe contact with
the cartilage surface, spectral data (average of three spectra per location) were ac-
quired. To preprocess the spectra (710–1850 nm), a third order SG filter was applied
for smoothing the spectral data. We had a window size of 17.40 nm (or 29 data
points) for the spectrometer with a 0.6 nm resolution, and a window size of 108.8
nm (or 17 data points) for the spectrometer with a 6.4 nm resolution.

6.2 CARTILAGE THICKNESS AND BIOMECHANICAL TESTING

In studies I and II, cartilage thickness was determined using optical coherence to-
mography (OCT) with an Ilumien PCI Optimization System (St. Jude Medical, St.
Paul, MN, USA), a 1305±55 nm scanning wavelength, an axial resolution of ≤ 20
µm, and a lateral resolution of 25–60 µm. OCT was utilized because of the thin-
ness of the cartilage (~0.8 mm, Table 7.1). Subsequently, biomechanical measure-
ments (Figure 6.3) were conducted via indentation testing, with samples immersed
in phosphate-buffered saline (PBS) [122, 123]. The material testing device consisted
of a plane-ended indenter (d = 530 µm), a load cell (1000 g, sensitivity ± 0.25%,
Model 303 31, Honeywell Sensotec Sensors, Columbus, OH, USA), and an actuator
(displacement resolution was 0.1 µm, PM500-1 A, Newport, Irvine, CA, USA). In-
stantaneous modulus was measured on all 869 measurement locations; however, due
to longer acquisition times, the dynamic and equilibrium moduli were measured for
only 202 points.

In study III, vernier calipers (resolution = 0.01 mm) was used to determine car-
tilage thickness; the cartilage layer was much thicker than in studies I and II (Table
7.5). The thickness was estimated as the average of four longitudinal measurements
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equidistant around the perimeter of the 8 mm plugs. As in studies I and II, the
biomechanical properties of the cartilage were determined via indentation testing
(d = 667 or 728 µm plane-ended indenter), using the same material testing device.
For the summary on biomechanical measurements protocol, see Table 6.2 and Figure
6.3.

12.5 kPa

600 and
900 s

7.5 and 5%
of remaing
cartilage
thickness

4 cycles,
1 Hz

Intantaneous and
equilibrium modulus

Dynamic
modulus

Time (s)
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r
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n

%

Figure 6.3: Summary of the biomechanical measurements protocol. In studies, I
and II, 7.5% indentation thickness with 600 seconds of relaxation time was utilized,
while in study III, 5% indentation thickness with 900 seconds of relaxation time
were utilized.

Table 6.2: Summary of the biomechanical protocol in studies I-III.

Study Instrumentation Prestress (σ) Protocol Parameters

I/II Indentation 12.5 kPa Stress-relaxation protocol EInst, EEq
material tester (3 x 7.5%, trelax = 10 min) + EDyn

sinusoidal loading
(frequency=1.0 Hz, ε*=1%)

III Indentation 12.5 kPa Stress-relaxation protocol EInst, EEq
material tester (3 x 5%, trelax = 15 min) + EDyn

sinusoidal loading
(frequency=1.0 Hz, ε=2%)

* Sinusoidal strain amplitude w.r.t to the tissue thickness.

Instantaneous modulus (EInst) was determined at the ramp phase of either the
2nd or 3rd step and equilibrium modulus (EEq) from the fit to the last three equi-
librium points (Figure 2.2). Dynamic modulus (EDyn) was calculated as a ratio of
the stress and strain amplitudes. Moduli were computed using the Hayes solu-
tion (Equation 6.1 [124]) for indentation geometry assuming the following Poisson’s
ratios: ν = 0.5 for EInst, 0.1 for EEq , and 0.5 for EDyn[125]:
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E = Em
(1− ν2)π<

2κht
, (6.1)

where Em is the measured modulus, ν the Poisson’s ratio, < the radius of the inden-
ter, κ the theoretical correction factor [126], and ht the cartilage thickness.

6.3 HISTOLOGY

In study II, the cartilage composition and structural properties from the equine sam-
ples were determined. Osteochondral samples were subjected to decalcification in
a solution of formalin and ethylenediaminetetraacetic acid (EDTA). After decalci-
fication, the samples were embedded in paraffin blocks and four sections of 5 µm
in thickness were extracted using a microtome. Histological imaging of the sections
utilized Fourier transform infrared – FTIR (n = 1) micro-spectroscopy and polarized
light microscopy – PLM (n = 3).

6.3.1 Collagen and proteoglycan distribution

FTIR imaging in FTIR microscopy was performed with a Thermo iN10 MX FT-
IR microscope (Thermo Nicolet Corporation, Madison, WI, USA) in transmission
mode. The images were acquired at a spectral resolution of 4 cm−1 and 25× 25 µm2

pixel size. Each image was 2500 µm wide, covering the full thickness of cartilage in
the MIR region. With an average of four scans per pixel and 530 sample locations,
collagen content was estimated from amide I peak in the 1584-1720 cm−1 region and
PG content from the carbohydrate area in the 984-1140 cm−1 region.

6.3.2 Collagen orientation

Collagen orientation was measured using an Abrio PLM system (CRi, Inc., Woburn,
MA, USA) and a conventional light microscope (Nikon Diaphot TMD, Nikon, Inc.,
Shinagawa, Tokyo, Japan). The main components of the set-up included a green
band-pass filter, a circular polarizer, and a computer-regulated analyser consisting
of dual liquid crystal polarizers and a charge-coupled device (CCD) camera. The
imaging was performed at a 4x objective and a 2.53 × 2.53 µm2 pixel size. The
resulting images displayed 0◦ for collagen orientation running parallel to cartilage
surface and 90◦ orientation for perpendicularly oriented fibrils.

6.4 MULTIVARIATE REGRESSION MODELLING AND STATISTICAL
ANALYSES

In the study I, a comparison of different regression techniques was conducted to
determine the optimal multivariate regression technique for the analysis of cartilage
data. It compared PLSR, PCR, ridge, LASSO, and LS-SVM, regression techniques.
To optimize the regression techniques the hyperparameters, namely the number of
components for PLSR and PCR, shrinkage penalty factor for ridge regression, step
size for LASSO and lambda for LS-SVM, were iterated from minimum to maximum
values. The resulting series of models each technique yielded was subjected to a
k-fold cross-validation (k = 10) and tested using an independent test set. The model
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performing the best, in terms of root mean square error of calibration (RMSEC),
R2

Train, and R2
Test, from each series, was retained. Finally, the performance metrics

and the hyperparameters of the models retained were compared. This protocol
ensured optimal settings for models under each regression technique. Variable se-
lection methods namely, MC-UVE, CARS, VCPA, BiPLS, GA and jack-knife, were
used to further optimize the best regression technique.

Study II identified spatial dependency due to adjacent measurement locations as
a valid limitation that needed to be addressed in our regression analysis. Hence, the
development of hybrid regression techniques (Figure 6.4), by combining dimension
reduction methods and linear mixed effects (LME) modelling, became necessary. We
focused on exploring the spatial dependency levels by grouping samples measured
in the same joint (i.e., joint dependency) and samples measured on a particular bone
of the joint (i.e., bone dependency) [127]. These dependency levels are accounted
as mixed effects and dimension-reduced spectra as fixed effects, in LME models
(equation 6.2).

Tissue property ≈ NIRDimension reduced spectra

+ (1|Joints1−5) + (1|BonesUpper−Lower) (6.2)

Briefly, PCA scores for PCA-LME and LASSO selected wavelengths in LASSO-
LME were first computed and LME models were calibrated using information from
40 AIs (Figure 6.1, equation 6.2). The dependency levels containing sample grouping
information are stored in Z and M design matrices 6.4. Hence, tissue property was
predicted by utilizing dimension reduced spectra and dependency levels as shown
in the equation in 6.2.

Figure 6.4: The hybrid regression technique.

To evaluate the model, 40 AIs were used in training set; the remaining four AIs
were used for testing (Figure 6.4). This process was repeated eleven times until all
the AIs were included in the test set exactly once. To determine the effect of spa-
tial dependency, on model performance, the prediction models from the standard
versions, namely PCR and LASSO regression, were subjected to a similar data split,
and their performance was compared using RMSECV and RMSEP values.
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Figure 6.5: Hybrid regression technique and kNN classifier in the process flow.

In study III, the PCA-LME regression technique developed in study II, was
utilized to create models for estimating cartilage spectra in vitro and biomechani-
cal properties, while accounting for spatial dependency. Additionally, a k-nearest
neighbours (kNN) classifier was employed to reject outlying ex vivo spectra resulting
from sub-optimal probe-cartilage contact (Figure 6.5, equation 6.3).

Tissue property ≈ PCA Scores + (1|Location1−19)

+ (1|BonesTibia,Femur,Patella) + (1|JointsLe f t or right) + (1|Cadaver1−19) (6.3)

The prediction model performances were evaluated for both in vitro and ex vivo
NIRS data; we used Spearman’s rank correlation (ρ) and the ratio of performance to
interquartile range (RPIQ). The RPIQ was calculated as a ratio of the RMSE to the
interquartile range.
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7 RESULTS

This chapter presents a synopsis of the main results and the relationship between
studies I to III (Figure 7.1). For detailed results, kindly refer to the original publica-
tions included in the supplementary material.

A hybrid modelling technique was
developed by employing dimension
reduced NIR spectra in LME modelling.

* PCA-LME vs. PCR
* LASSO-LME vs. LASSO

Linear mixed effects (LME) modelling is
utilized to address the spatial dependency.
However, it does not support high-dimensional
data.

Hybrid regression methods outperformed the
standard regression techniques and addressed
the spatial dependency limitation.
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Arthroscopic NIRS measurements have non-
optimal probe-cartilage contact resulting in
spectral outliers.

kNN classifier was utilized to
reject the spectral outliers.

Cartilage biomechanial properties
were predicted from in vitromodel.

Prediction models (PCA-LME) developed from in vitro
measurements needs to be adapted for ex vivo and,
potentially, for in vivo applications.

Optimal regression method

Performance enhanced by variable
selection methods

* PCR
* PLSR
* Ridge
* LASSO
* LS-SVM

* MC-UVE
* CARS
* VCPA
* BiPLS
* GA
*Jack-knife

PLSR was found optimal.

MC-UVE was found optimal.

PLSR consistently outperformed the other techniques
and variable selection methods further enahanced its
performance. Limitation: Spatial dependency.

Study I

Study II

Study III

Figure 7.1: Summary of the main findings referred in this thesis.
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7.1 COMPARISON OF REGRESSION TECHNIQUES

Study I using multivariate regression models, predicted from NIR spectra equine
cartilage thickness and biomechanical properties (Table 7.1), namely instantaneous
modulus, equilibrium modulus and dynamic modulus. The performance of differ-
ent regression methods was evaluated using an independent test set. Compared to
other regression models, PLSR performed consistently well, with a higher R2

Testset,
lower RMSEP, and faster computational times (Table 7.2). However, Zou’s signifi-
cance test revealed that performance differences amongst the top three techniques
(PLSR, LASSO, and ridge regression) were non-significant (Table 7.2) [128].

Table 7.1: Summary of equine cartilage properties determined in studies I and II.

Property Mean Range
Thickness (mm) 0.89 0.32 - 1.81
Instantaneous Modulus (MPa) 4.76 0.11 - 20.88
Equilibrium Modulus (MPa) 2.00 0.03 - 5.38
Dynamic Modulus (MPa) 9.43 0.24 - 23.30

PG content (AU)* 6.31 0.60 - 14.71

Collagen Content (AU)* 33.35 12.16 - 64.39

Collagen Orientation angle (◦)* 71.12 37.13 - 83.75
* An average of superficial, middle and deeper layers of
the cartilage.

Variable selection methods were applied to optimize PLSR performance. MC-
UVE was observed to not only improve PLSR results but also simplify the model,
with a reduced number of components required for modelling the relationship be-
tween spectra and cartilage properties (Table 7.3).

Table 7.2: Test set results of the regression techniques comparison.

Technique* R2 RMSEP Time**

(secs)
Technique R2 RMSEP Time

(secs)
Thickness (mm) Equilibrium Modulus (MPa)

PLSR5 75.5 0.11 2.50 PLSR5 68.5 0.94 1.00
RIDGE 74.0 0.11 1200 LASSO 60.1 1.06 96
LASSO 68.6 0.12 170 LS-SVM 54.2 1.14 0.16
LS-SVM 67.8 0.13 0.30 RIDGE 54.1 1.15 505
PCR13 67.3 0.13 1.00 PCR15 32.6 1.38 0.37
Instantaneous Modulus (MPa) Dynamic Modulus (MPa)

PLSR6 51.0 2.46 2.0 LASSO 66.3 3.56 102
RIDGE 49.7 2.49 1100 LS-SVM 65.9 3.58 0.15
LASSO 48.7 2.52 5800 PLSR2 64.8 3.63 1.0
PCR5 44.2 2.62 0.60 RIDGE 61.3 3.82 470

LS-SVM 42.8 2.66 0.25 PCR 60.3 3.86 0.33
* Number of components is indicated in the power for PLSR and PCR.
** The computation times were calculated based on using Intel(R) Core(TM)
i5-2400 CPU at 3.10 GHz with 64-bit Operating System.

34



Table 7.3: Test set results of variable selection methods comparison on PLSR mod-
els.

Method N R2 RMSEP Method N R2 RMSEP
Thickness (mm) Equilibrium Modulus (MPa)

MC-UVE 4 75.9 0.10 None 5 68.5 0.94
None** 5 75.5 0.11 MC-UVE 5 65.5 0.99
GA 8 74.8 0.11 VCPA 6 54.7 1.13
JK 1 74.0 0.11 CARS 2 54.1 1.14

BiPLS 12 70.0 0.12 GA 3 51.9 1.17
CARS 5 69.7 0.12 JK 6 43.0 1.27
VCPA 5 65.5 0.12 BiPLS 6 38.2 1.32

Instantaneous Modulus (MPa) Dynamic Modulus (MPa)
CARS 3 51.8 2.44 CARS 3 77.8 2.89
None 5 51.0 2.46 MC-UVE 3 73.9 3.13
VCPA 4 49.0 2.51 GA 3 72.7 3.50

MC-UVE 2 48.3 2.53 JK 5 67.4 3.50
GA 4 48.3 2.53 None 2 64.8 3.63

BiPLS 7 45.5 2.59 BiPLS 7 55.9 4.07
JK 7 45.4 2.60 VCPA 1 50.5 4.31

** Variable selection not applied.
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7.2 ACCOUNTING FOR SPATIAL DEPENDENCY IN SPECTROSCOPIC
DATA

In study II, hybrid regression models, namely PCA-LME and LASSO-LME, per-
formed better than standard regression algorithms (Table 7.4). PCA scores and
wavelengths selected by LASSO were utilized together with LME, for regression
modelling. For PCA-LME, the optimal number of components ranged from seven
to nine. We observed that PCA-LME performed consistently better in modelling
equine cartilage properties from spectral data than LASSO-LME did, across all prop-
erties. Furthermore, a mismatch in the proportionality between LASSO-LME’s cor-
relation values and the errors observed was detected.

Table 7.4: Comparison of standard and hybrid regression techniques.

Property Standard Regression Hybrid Regression

ρ
RMSEP

ρ
RMSEP

% %
Thickness 0.67 18.54 0.74 16.40

(mm) 0.57* 20.17 0.65 18.36
Dynamic 0.46 37.80 0.56 34.71

Modulus (MPa) 0.29 42.73 0.27 39.58
PG 0.34 22.42 0.42 22.54

content (AU) 0.34 22.26 0.37 21.89
Equilibrium 0.32 37.50 0.48 35.02

Modulus (MPa) 0.38 33.90 0.46 34.84
Collagen 0.35 23.34 0.27 24.90

Content (AU) 0.29 22.90 0.32 23.14
Collagen Orientation 0.27 25.01 0.23 25.35

angle (◦) 0.25 23.54 0.27 24.29

PCR and PCA-LME are shown in white rows while LASSO and
LASSO-LME are shown in grey rows. The performance parameters ρ
(Spearman’s rank correlation) and root mean square errors of predic-
tion (RMSEP) were computed.
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7.3 HYBRID REGRESSION TECHNIQUE EMPLOYED ON SPECTRAL
DATA ACQUIRED FROM HUMAN CADAVERIC KNEE JOINTS
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Figure 7.2: The representative raw and preprocessed (3rd order SG smoothed)
spectra for in vitro (A) and ex vivo (B) measurements.

Table 7.5: Summary of reference human cartilage properties analysed in study III.

Property Mean Range
Thickness (mm) 2.58 1.22 - 5.90
Instantaneous Modulus (MPa) 13.81 0.12 - 51.82
Equilibrium Modulus (MPa) 0.89 0.02 - 3.67
Dynamic Modulus (MPa) 5.53 0.09 - 19.76
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The hybrid regression method developed, PCA-LME, when applied for mod-
elling the relationship between preprocessed NIR spectra (Figure 7.2) and biome-
chanical properties of human cartilage in vitro (Table 7.5), provided results with
good performance metrics (Figure 7.3). To reject spectral outliers, we introduced the
kNN classifier in the regression workflow; we observed it improved the accuracy of
predictive models on arthroscopic spectra (Figure 7.3). The effect of the kNN filter
is visualised in Figure 7.4 (ii) vs. (iii).

Figure 7.3: Performance of the prediction models on human knee cartilage data.
Results of in vitro data show calibration (cal.) and validation (val.) on an indepen-
dent dataset performance, while the results under ex vivo show validation model
performance without (val. 1) kNN classifier and with classifier (val. 2) employed
for rejecting spectral outliers.
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Figure 7.4: Predicted vs. reference plots for thickness (mm, A) and instantaneous
modulus (MPa, B). The plots depict calibration data (blue, unfilled) and test set
(red, filled). The plots in A show the model performance on in vitro (i) and ex vivo
measurements, without (ii) and with (iii) the classifier. The plot in B shows the
effect of classifier in predicting the instantaneous modulus.
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8 DISCUSSION

This thesis explored various approaches for optimizing multivariate regression tech-
niques for the NIRS characterization of articular cartilage integrity. The thesis also
focused on adapting in vitro models for potential clinical applications. Addressing
the limitations of spatial dependency with respect to adjacent measurement loca-
tions (as identified by Singer et al [129] and Ranstam et al [30, 130]) resulted in
the development of a hybrid regression technique (study II). Study III applied this
multivariate technique developed in study II, for the arthroscopic ex vivo evaluation
of human cartilage biomechanical properties.

The studies included in this thesis encompass the development of NIRS-based
characterization of articular cartilage. Firstly, a shift from employing classical re-
gression techniques in their native form to employing optimized regression tech-
niques suitable for dependent datasets improved prediction model performance
(from study I to II and III). Secondly, the novel arthroscopic NIRS probe recently
developed by our research group enabled the assessment of cartilage integrity dur-
ing arthroscopy (from studies I and II to III). Thirdly, the regression techniques
developed were first tested on animal models and then successfully adapted for the
arthroscopic evaluation of human cartilage ex vivo, demonstrating the robustness
of the approach (from studies II to III). Lastly, prediction models developed (us-
ing spectral data collected under in vitro laboratory conditions) were employed in
making predictions based on noisy and real-world arthroscopic spectra, improving
model robustness. The following sections touch upon the results of each individual
study and their importance.

8.1 OPTIMAL REGRESSION TECHNIQUE

NIRS-based characterization of cartilage integrity relies on the performance of a
multivariate model, with particular interest in regression models for estimating
physico-chemical and material properties from the spectral data. With numerous
regression techniques available, it is necessary to evaluate the performance of all ap-
plicable methods and options, to improve prediction performance. The high dimen-
sionality and multicollinearity nature of NIRS data coupled with limited sample size
potentially creates challenges during regression analysis; study I was formulated to
address these concerns. The primary aim was to undertake a comprehensive com-
parison study consisting of classical regression techniques and variable selection
methods. This was conducted, to the best of our knowledge, for the first time,
to determine the optimal method for the analysis of cartilage NIRS spectra. The
secondary aim was to observe how different regression techniques set weights or
estimators in relating spectral data to the biomechanical properties measured. PLSR
and shrinkage regression techniques exhibited the best calibration and test perfor-
mance. The ability of PLSR to capture the variances of both predictor variables
(NIRS) and response variables (tissue properties) enabled superior calibration per-
formance [131]. This is unlike PCR (Table 7.2) [132, 133], which is based only on
variances observed in NIR spectra.
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Shrinkage regression techniques (ridge and LASSO) are good at optimizing the
cost function or residual sum of squares (RSS), by adding a penalty term in the
linear regression cost function [121, 134, 135]. The inherent resistance of ridge re-
gression to over-fitting is probably why it outperformed LASSO. LASSO, despite its
sparse nature, yielded good prediction performance on a test set; however, it was
computationally demanding [136]. Although PLSR performed consistently better
across all tissue properties, Zou’s significance test revealed that the performance
difference between PLSR and shrinkage regression techniques was statistically non-
significant. We observed LS-SVM to be prone to overfitting possibly due to a data
piling (coinciding projections of data in subspace) issue resulting from high data
dimensionality [137, 138].

The approach adopted in this thesis to address the issue of the high dimensional-
ity of NIRS data in regression analysis involved the application of variable selection
methods [114, 139, 140]. This involves restricting cartilage NIRS wavelength regions
prone either to saturation due to water in the tissue or to outliers due to water be-
tween the probe and cartilage surface during arthroscopic spectral measurements.
Hence, variable selection methods could eliminate least-performing spectral regions,
effectively reducing spectral variables for regression that were available and focus-
ing regression computations on the spectral variables retained [141]. MC-UVE was
observed to retain spectral data in the wavelength range corresponding to C-H (725-
780 nm) and O-H (925-980 nm) while the N-H region centred at 850 nm (Table 3.1),
suggesting that these regions are important in the assessment of cartilage proper-
ties. The narrow NIR range of spectral data 750-1100 nm in study I could have
restricted the performance of the regression models; we observed the variable se-
lection methods displayed marginal improvements over PLSR performance (Table
7.3).

The percentage of error in predicting the test values for equilibrium or dynamic
moduli was in the 11% - 13% range for PLSR. The acceptable range of errors in pre-
dicting biomechanical parameters from NIRS data, is however, unclear. The results
of the regression analysis could have benefited from a larger pool of data, which
may improve prediction outcomes. The limitations of study I were the restriction of
spectral data to a narrow band due to restrictions imposed by instrumentation and
the lack of accounting for grouping effects resulting from adjacent measurement
locations. These limitations were addressed in subsequent studies.

8.2 NEED FOR A HYBRID REGRESSION TECHNIQUE

NIRS-based characterization of cartilage integrity is undoubtedly a promising tech-
nique, but classical regression techniques in their current form are unsuitable for
arthroscopic applications [21, 91]. The arthroscopic assessment of cartilage tissue
properties to determine the severity or spread of a lesion could enable orthopaedic
surgeons to map areas of damaged cartilage for optimal repair and to evaluate the
success of the intervention [142–146]. These steps involve adjacent measurement
locations, and classical regression techniques fail to handle spatial dependency re-
sulting from repeated measures during arthroscopic procedures.

Numerous applications have utilized LME modelling to handle grouping effects
in data [147–150]. Since LME cannot handle high dimensional data [151], it needs
to be combined with dimension reduction methods [152], such as PCA or PLS. Re-
cently, Conforti et al combined LME with PLS to account for spatial dependency in
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the analysis of spectral data collected from soil samples [153]. However, since PLS
requires both spectral data and tissue properties to compute PLS latent variables,
this presents a limitation during independent testing or live arthroscopy measure-
ments when tissue properties are unavailable. Hence, this study utilized PCA as the
dimension reduction method, which was then used to calculate principal component
scores as a fixed effect input to LME modelling. Next, LASSO was employed due
to its ability to create sparse models on high dimensional data, without significant
loss in prediction performance [110]. LASSO combined with LME also performed
reasonably well. However, errors and correlations were inconsistent, due to the pos-
sibility of higher variances in the test set than in the training data. This inconsistency
was unavoidable without introducing bias in the results; the division of data into
training and test datasets was performed at the smallest level (AI) of the hierarchy.
However, this inconsistency could be absent in other applications.

The improvements in the performance of prediction models when accounting for
spatial dependency became apparent in a comparison of the results of the hybrid
regression techniques with those of the standard regression technique. We thus
addressed the practical limitation imposed by the study design in tissue mapping
applications.

8.3 THE APPLICATION OF THE HYBRID REGRESSION TECHNIQUE
IN KNEE ARTHROSCOPY

In developing prediction models for the cartilage assessments using arthroscopi-
cally recorded spectra, the challenges of handling imperfect probe-cartilage contact
needed to be addressed [154, 155]. Achieving perfect contact between the probe
and articular surface was a problem when manoeuvring the inner contours of the
knee joint. First, PCA-LME regression technique was used to build in vitro models
from data collected in a controlled laboratory environment. This ensured that the
models were trained on spectra that were collected as accurately as possible. Next,
a protocol employing a kNN classifier trained to reject noisy NIR spectra (resulting
from poor probe-cartilage contact) from arthroscopic measurements was developed.
Finally, these in vitro models were applied on the NIR spectra measured during
arthroscopy to predict cartilage biomechanical properties while the kNN classifier
was used to reject spectral outliers.

The integration of the hybrid regression technique and spectral classifier en-
abled, to our knowledge, for the first time, the prediction of the functional properties
of cartilage from the human knee joint on arthroscopically acquired spectra. This
integrated approach could allow real-time assessment of cartilage conditions well
beyond the superficial layer and uncover conditions indiscernible during a conven-
tional arthroscopic procedure [20]. The use of a wider spectral bandwidth (Study
III, 710 to 1850 nm) in the model as compared to earlier studies (Studies I and II,
700 to 1050 nm) led to improved correlations. The limited number of cadavers (n =
9) and the lack of diversity in terms of age, gender, and cartilage conditions, are a
shortcoming of this proof-of-concept study.

The optical power rating of the light source (AvaLight-HAL-S-Mini, Avantes BV)
ranges from 3.2 to 7 mW in the 350 - 1100 nm wavelength region. The photochemical
damage from UV rays and the thermal damage due to the rise in tissue temperature
are potential effects to be considered in clinical applications. These effects can be
minimized by using a UV filter to eliminate the UV wavelength band, and a transis-
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tor–transistor logic (TTL) shutter to limit the overall tissue exposure time; acquisi-
tion time was 2.4 secs per measurement in Study III. The tissue damage threshold
for an NIR light source within a 700-1064 nm wavelength range and an exposure
time of two seconds ranges between 119.8 to 454.8 W/cm3 [156]. Thus, NIRS oper-
ating within the 710-1850 nm wavelength range (Study III) is non-ionizing, and the
heating effect is minimal as the power per area for the optical probe is 0.68 W/cm2.
However, during arthroscopies, the knee joint is continuously irrigated by saline at
room temperature. Thus, the heating effect if any in cartilage, (due to its nearly
white colour), is minimized.

8.4 FUTURE STUDIES

The prediction models developed in study III would benefit from the inclusion of
structural and compositional properties as these can aid the surgeon’s assessments
of cartilage integrity. Furthermore, the models used in study III were based on sam-
ples collected from mostly male (eight out of nine) and older cadavers. The dataset
could be substantially diversified by including variations in gender, age, and knee
conditions, aiding in the creation of a generalized cartilage model. These variations
could be modelled as mixed effects in the hybrid regression technique, further en-
hancing the applicability of the model. The models developed could be utilized
in predicting properties of cartilage in vivo, possibly in individuals undergoing total
knee replacements. This in vivo assessment could serve as a validation for the model,
and verification could be performed by subjecting the cartilage collected after knee
replacement to in vitro measurements.

The probe-cartilage contact could further be improved with electronic sensors,
adjustable or flexible probe heads, or other similar advancements. These design
enhancements would enable the use of the probe on difficult surface contours of the
joint, without problematic spectral outliers. These improvements could be utilized
and combined with other imaging modalities, such as OCT and ultrasound, yielding
a comprehensive and quantitative multimodal tool for arthroscopy [157, 158].
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9 SUMMARY AND CONCLUSIONS

The recent improvements in computational power have led to the utilization of pow-
erful multivariate regression techniques in NIRS, enabling accurate and reliable as-
sessments of articular cartilage conditions. The studies in this thesis have supple-
mented these developments in the application of NIRS by optimizing multivariate
regression techniques, enabling arthroscopic characterization of cartilage integrity
in the human knee joint.

The following are the prominent findings of this thesis:

1. PLSR effectively handled multicollinearity in spectral data and related these
spectra to cartilage tissue properties. Variable selection methods simplified
PLSR prediction models, improving the performance of the model.

2. The hybrid regression technique was capable of simultaneously accounting for
relevant levels of dependencies and taking into consideration the assumption
of sample independence.

3. The combination of hybrid regression modelling and a spectral classifier en-
abled the NIRS-based arthroscopic evaluation of the biomechanical properties
of articular cartilage in the human knee joint.

Thus, the findings reported in this thesis and further work in this direction (see
Discussion) could revolutionize the arthroscopic assessment of cartilage health and
improve our understanding of osteoarthritis.
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